March  2015, 20(2): 323-337. doi: 10.3934/dcdsb.2015.20.323

An immersed interface method for Pennes bioheat transfer equation

1. 

Department of Mathematics, Miami University, Middletown OH, 45042, United States

2. 

Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43402-0221

Received  October 2013 Revised  May 2014 Published  January 2015

We consider an immersed finite element method for solving one dimensional Pennes bioheat transfer equation with discontinuous coefficients and nonhomogenous flux jump condition. Convergence properties of the semidiscrete and fully discrete schemes are investigated in the $L^{2}$ and energy norms. By using the computed solution from the immerse finite element method, an inexpensive and effective flux recovery technique is employed to approximate flux over the whole domain. Optimal order convergence is proved for the immersed finite element approximation and its flux. Results of the simulation confirm the convergence analysis.
Citation: Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323
References:
[1]

S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach,, SIAM J. Numer. Anal., 38 (2000), 660.  doi: 10.1137/S0036142999361517.  Google Scholar

[2]

S. H. Chou, An immersed linear finite element method with interface flux capturing recovery,, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343.  doi: 10.3934/dcdsb.2012.17.2343.  Google Scholar

[3]

W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure,, Numerical Heat Transfer, 46 (2004), 447.   Google Scholar

[4]

W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature,, Num. Heat Transfer, 50 (2006), 809.   Google Scholar

[5]

Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,, Comput. Biol. Med., 34 (2004), 495.  doi: 10.1016/S0010-4825(03)00086-6.  Google Scholar

[6]

X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions,, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284.   Google Scholar

[7]

S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries,, Burns, 28 (2002), 713.  doi: 10.1016/S0305-4179(02)00104-3.  Google Scholar

[8]

Z. Li, The immersed interface method using a finite element formulation,, Applied Numerical Mathematics, 27 (1998), 253.  doi: 10.1016/S0168-9274(98)00015-4.  Google Scholar

[9]

Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability,, Numer. Methods. Partial Differential Equations, 20 (2004), 338.  doi: 10.1002/num.10092.  Google Scholar

[10]

Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,, Numer. Math., 96 (2003), 61.  doi: 10.1007/s00211-003-0473-x.  Google Scholar

[11]

T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems,, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807.  doi: 10.3934/dcdsb.2007.7.807.  Google Scholar

[12]

E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating,, Ann. Biomed. Eng, 31 (2003), 1007.   Google Scholar

[13]

H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm,, J. Appl. Physiol., 1 (1948), 93.   Google Scholar

[14]

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,, Springer, (2006).   Google Scholar

[15]

D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire,, J. Biomed Eng., 116 (1994), 250.   Google Scholar

show all references

References:
[1]

S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach,, SIAM J. Numer. Anal., 38 (2000), 660.  doi: 10.1137/S0036142999361517.  Google Scholar

[2]

S. H. Chou, An immersed linear finite element method with interface flux capturing recovery,, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343.  doi: 10.3934/dcdsb.2012.17.2343.  Google Scholar

[3]

W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure,, Numerical Heat Transfer, 46 (2004), 447.   Google Scholar

[4]

W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature,, Num. Heat Transfer, 50 (2006), 809.   Google Scholar

[5]

Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,, Comput. Biol. Med., 34 (2004), 495.  doi: 10.1016/S0010-4825(03)00086-6.  Google Scholar

[6]

X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions,, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284.   Google Scholar

[7]

S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries,, Burns, 28 (2002), 713.  doi: 10.1016/S0305-4179(02)00104-3.  Google Scholar

[8]

Z. Li, The immersed interface method using a finite element formulation,, Applied Numerical Mathematics, 27 (1998), 253.  doi: 10.1016/S0168-9274(98)00015-4.  Google Scholar

[9]

Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability,, Numer. Methods. Partial Differential Equations, 20 (2004), 338.  doi: 10.1002/num.10092.  Google Scholar

[10]

Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,, Numer. Math., 96 (2003), 61.  doi: 10.1007/s00211-003-0473-x.  Google Scholar

[11]

T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems,, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807.  doi: 10.3934/dcdsb.2007.7.807.  Google Scholar

[12]

E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating,, Ann. Biomed. Eng, 31 (2003), 1007.   Google Scholar

[13]

H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm,, J. Appl. Physiol., 1 (1948), 93.   Google Scholar

[14]

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,, Springer, (2006).   Google Scholar

[15]

D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire,, J. Biomed Eng., 116 (1994), 250.   Google Scholar

[1]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[2]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[3]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[6]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[7]

Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[9]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[10]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[11]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[14]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[15]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[16]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

[17]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[18]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]