March  2015, 20(2): 323-337. doi: 10.3934/dcdsb.2015.20.323

An immersed interface method for Pennes bioheat transfer equation

1. 

Department of Mathematics, Miami University, Middletown OH, 45042, United States

2. 

Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43402-0221

Received  October 2013 Revised  May 2014 Published  January 2015

We consider an immersed finite element method for solving one dimensional Pennes bioheat transfer equation with discontinuous coefficients and nonhomogenous flux jump condition. Convergence properties of the semidiscrete and fully discrete schemes are investigated in the $L^{2}$ and energy norms. By using the computed solution from the immerse finite element method, an inexpensive and effective flux recovery technique is employed to approximate flux over the whole domain. Optimal order convergence is proved for the immersed finite element approximation and its flux. Results of the simulation confirm the convergence analysis.
Citation: Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323
References:
[1]

S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach,, SIAM J. Numer. Anal., 38 (2000), 660.  doi: 10.1137/S0036142999361517.  Google Scholar

[2]

S. H. Chou, An immersed linear finite element method with interface flux capturing recovery,, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343.  doi: 10.3934/dcdsb.2012.17.2343.  Google Scholar

[3]

W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure,, Numerical Heat Transfer, 46 (2004), 447.   Google Scholar

[4]

W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature,, Num. Heat Transfer, 50 (2006), 809.   Google Scholar

[5]

Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,, Comput. Biol. Med., 34 (2004), 495.  doi: 10.1016/S0010-4825(03)00086-6.  Google Scholar

[6]

X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions,, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284.   Google Scholar

[7]

S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries,, Burns, 28 (2002), 713.  doi: 10.1016/S0305-4179(02)00104-3.  Google Scholar

[8]

Z. Li, The immersed interface method using a finite element formulation,, Applied Numerical Mathematics, 27 (1998), 253.  doi: 10.1016/S0168-9274(98)00015-4.  Google Scholar

[9]

Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability,, Numer. Methods. Partial Differential Equations, 20 (2004), 338.  doi: 10.1002/num.10092.  Google Scholar

[10]

Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,, Numer. Math., 96 (2003), 61.  doi: 10.1007/s00211-003-0473-x.  Google Scholar

[11]

T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems,, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807.  doi: 10.3934/dcdsb.2007.7.807.  Google Scholar

[12]

E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating,, Ann. Biomed. Eng, 31 (2003), 1007.   Google Scholar

[13]

H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm,, J. Appl. Physiol., 1 (1948), 93.   Google Scholar

[14]

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,, Springer, (2006).   Google Scholar

[15]

D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire,, J. Biomed Eng., 116 (1994), 250.   Google Scholar

show all references

References:
[1]

S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach,, SIAM J. Numer. Anal., 38 (2000), 660.  doi: 10.1137/S0036142999361517.  Google Scholar

[2]

S. H. Chou, An immersed linear finite element method with interface flux capturing recovery,, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343.  doi: 10.3934/dcdsb.2012.17.2343.  Google Scholar

[3]

W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure,, Numerical Heat Transfer, 46 (2004), 447.   Google Scholar

[4]

W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature,, Num. Heat Transfer, 50 (2006), 809.   Google Scholar

[5]

Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,, Comput. Biol. Med., 34 (2004), 495.  doi: 10.1016/S0010-4825(03)00086-6.  Google Scholar

[6]

X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions,, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284.   Google Scholar

[7]

S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries,, Burns, 28 (2002), 713.  doi: 10.1016/S0305-4179(02)00104-3.  Google Scholar

[8]

Z. Li, The immersed interface method using a finite element formulation,, Applied Numerical Mathematics, 27 (1998), 253.  doi: 10.1016/S0168-9274(98)00015-4.  Google Scholar

[9]

Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability,, Numer. Methods. Partial Differential Equations, 20 (2004), 338.  doi: 10.1002/num.10092.  Google Scholar

[10]

Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,, Numer. Math., 96 (2003), 61.  doi: 10.1007/s00211-003-0473-x.  Google Scholar

[11]

T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems,, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807.  doi: 10.3934/dcdsb.2007.7.807.  Google Scholar

[12]

E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating,, Ann. Biomed. Eng, 31 (2003), 1007.   Google Scholar

[13]

H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm,, J. Appl. Physiol., 1 (1948), 93.   Google Scholar

[14]

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,, Springer, (2006).   Google Scholar

[15]

D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire,, J. Biomed Eng., 116 (1994), 250.   Google Scholar

[1]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[2]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[3]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[4]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[5]

Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185

[6]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[7]

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838

[8]

Harvey A. R. Williams, Lisa J. Fauci, Donald P. Gaver III. Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 519-540. doi: 10.3934/dcdsb.2009.11.519

[9]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[10]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[11]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks & Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[12]

Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluids-structure interaction in sperm motility. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 343-355. doi: 10.3934/dcdsb.2011.15.343

[13]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[14]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[15]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

[16]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[17]

Donald L. Brown, Vasilena Taralova. A multiscale finite element method for Neumann problems in porous microstructures. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1299-1326. doi: 10.3934/dcdss.2016052

[18]

Qingping Deng. A nonoverlapping domain decomposition method for nonconforming finite element problems. Communications on Pure & Applied Analysis, 2003, 2 (3) : 297-310. doi: 10.3934/cpaa.2003.2.297

[19]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

[20]

Shi Jin, Xu Yang, Guangwei Yuan. A domain decomposition method for a two-scale transport equation with energy flux conserved at the interface. Kinetic & Related Models, 2008, 1 (1) : 65-84. doi: 10.3934/krm.2008.1.65

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]