-
Previous Article
On the Boltzmann equation for charged particle beams under the effect of strong magnetic fields
- DCDS-B Home
- This Issue
- Next Article
An immersed interface method for Pennes bioheat transfer equation
1. | Department of Mathematics, Miami University, Middletown OH, 45042, United States |
2. | Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43402-0221 |
References:
[1] |
S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach,, SIAM J. Numer. Anal., 38 (2000), 660.
doi: 10.1137/S0036142999361517. |
[2] |
S. H. Chou, An immersed linear finite element method with interface flux capturing recovery,, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343.
doi: 10.3934/dcdsb.2012.17.2343. |
[3] |
W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure,, Numerical Heat Transfer, 46 (2004), 447. Google Scholar |
[4] |
W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature,, Num. Heat Transfer, 50 (2006), 809. Google Scholar |
[5] |
Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,, Comput. Biol. Med., 34 (2004), 495.
doi: 10.1016/S0010-4825(03)00086-6. |
[6] |
X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions,, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284.
|
[7] |
S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries,, Burns, 28 (2002), 713.
doi: 10.1016/S0305-4179(02)00104-3. |
[8] |
Z. Li, The immersed interface method using a finite element formulation,, Applied Numerical Mathematics, 27 (1998), 253.
doi: 10.1016/S0168-9274(98)00015-4. |
[9] |
Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability,, Numer. Methods. Partial Differential Equations, 20 (2004), 338.
doi: 10.1002/num.10092. |
[10] |
Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,, Numer. Math., 96 (2003), 61.
doi: 10.1007/s00211-003-0473-x. |
[11] |
T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems,, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807.
doi: 10.3934/dcdsb.2007.7.807. |
[12] |
E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating,, Ann. Biomed. Eng, 31 (2003), 1007. Google Scholar |
[13] |
H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm,, J. Appl. Physiol., 1 (1948), 93. Google Scholar |
[14] |
V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,, Springer, (2006).
|
[15] |
D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire,, J. Biomed Eng., 116 (1994), 250. Google Scholar |
show all references
References:
[1] |
S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach,, SIAM J. Numer. Anal., 38 (2000), 660.
doi: 10.1137/S0036142999361517. |
[2] |
S. H. Chou, An immersed linear finite element method with interface flux capturing recovery,, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343.
doi: 10.3934/dcdsb.2012.17.2343. |
[3] |
W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure,, Numerical Heat Transfer, 46 (2004), 447. Google Scholar |
[4] |
W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature,, Num. Heat Transfer, 50 (2006), 809. Google Scholar |
[5] |
Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics,, Comput. Biol. Med., 34 (2004), 495.
doi: 10.1016/S0010-4825(03)00086-6. |
[6] |
X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions,, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284.
|
[7] |
S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries,, Burns, 28 (2002), 713.
doi: 10.1016/S0305-4179(02)00104-3. |
[8] |
Z. Li, The immersed interface method using a finite element formulation,, Applied Numerical Mathematics, 27 (1998), 253.
doi: 10.1016/S0168-9274(98)00015-4. |
[9] |
Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability,, Numer. Methods. Partial Differential Equations, 20 (2004), 338.
doi: 10.1002/num.10092. |
[10] |
Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation,, Numer. Math., 96 (2003), 61.
doi: 10.1007/s00211-003-0473-x. |
[11] |
T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems,, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807.
doi: 10.3934/dcdsb.2007.7.807. |
[12] |
E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating,, Ann. Biomed. Eng, 31 (2003), 1007. Google Scholar |
[13] |
H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm,, J. Appl. Physiol., 1 (1948), 93. Google Scholar |
[14] |
V. Thomee, Galerkin Finite Element Methods for Parabolic Problems,, Springer, (2006).
|
[15] |
D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire,, J. Biomed Eng., 116 (1994), 250. Google Scholar |
[1] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[2] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[3] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[4] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[5] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[6] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[7] |
Wenya Qi, Padmanabhan Seshaiyer, Junping Wang. A four-field mixed finite element method for Biot's consolidation problems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020127 |
[8] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[9] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[10] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[11] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[12] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[13] |
P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178 |
[14] |
Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061 |
[15] |
Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096 |
[16] |
Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126 |
[17] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[18] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[19] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[20] |
Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]