March  2015, 20(2): 323-337. doi: 10.3934/dcdsb.2015.20.323

An immersed interface method for Pennes bioheat transfer equation

1. 

Department of Mathematics, Miami University, Middletown OH, 45042, United States

2. 

Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43402-0221

Received  October 2013 Revised  May 2014 Published  January 2015

We consider an immersed finite element method for solving one dimensional Pennes bioheat transfer equation with discontinuous coefficients and nonhomogenous flux jump condition. Convergence properties of the semidiscrete and fully discrete schemes are investigated in the $L^{2}$ and energy norms. By using the computed solution from the immerse finite element method, an inexpensive and effective flux recovery technique is employed to approximate flux over the whole domain. Optimal order convergence is proved for the immersed finite element approximation and its flux. Results of the simulation confirm the convergence analysis.
Citation: Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323
References:
[1]

S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach, SIAM J. Numer. Anal., 38 (2000), 660-680. doi: 10.1137/S0036142999361517.

[2]

S. H. Chou, An immersed linear finite element method with interface flux capturing recovery, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343-2357. doi: 10.3934/dcdsb.2012.17.2343.

[3]

W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure, Numerical Heat Transfer, 46 (2004), 447-461.

[4]

W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature, Num. Heat Transfer, 50 (2006), 809-834.

[5]

Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics, Comput. Biol. Med., 34 (2004), 495-521. doi: 10.1016/S0010-4825(03)00086-6.

[6]

X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284-301.

[7]

S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries, Burns, 28 (2002), 713-717. doi: 10.1016/S0305-4179(02)00104-3.

[8]

Z. Li, The immersed interface method using a finite element formulation, Applied Numerical Mathematics, 27 (1998), 253-267. doi: 10.1016/S0168-9274(98)00015-4.

[9]

Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods. Partial Differential Equations, 20 (2004), 338-367. doi: 10.1002/num.10092.

[10]

Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96 (2003), 61-98. doi: 10.1007/s00211-003-0473-x.

[11]

T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807-823. doi: 10.3934/dcdsb.2007.7.807.

[12]

E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating, Ann. Biomed. Eng, 31 (2003), 1007-1048.

[13]

H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm, J. Appl. Physiol., 1 (1948), 93-122.

[14]

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Springer, 2006.

[15]

D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire, J. Biomed Eng., 116 (1994), 250-255.

show all references

References:
[1]

S. H. Chou and S. Tang, Conservative P1 conforming and nonconforming Galerkin FEMs: effective flux evaluation via a nonmixed method approach, SIAM J. Numer. Anal., 38 (2000), 660-680. doi: 10.1137/S0036142999361517.

[2]

S. H. Chou, An immersed linear finite element method with interface flux capturing recovery, Discrete and Continuous Dynamical Systems-Series-B, 17 (2012), 2343-2357. doi: 10.3934/dcdsb.2012.17.2343.

[3]

W. Dai, H. Yu and R. Nassar, A forth order compact finite-difference scheme for solving a 1-D Pennes bioheat transfer equation in a tripple layered skin structure, Numerical Heat Transfer, 46 (2004), 447-461.

[4]

W. Dai, H. Yu and R. Nassar, Optimal temperature distribution in a three dimensional triple layered skin structure embedded with artery and vein vasculature, Num. Heat Transfer, 50 (2006), 809-834.

[5]

Z. S. Deng and J. Liu, Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics, Comput. Biol. Med., 34 (2004), 495-521. doi: 10.1016/S0010-4825(03)00086-6.

[6]

X. He, T. Lin and Y. Lin, Immersed finite element methods for elliptic interface problems with non-Homogeneous jump conditions, Inter. J. Numerical Analysis and Modeling, 8 (2011), 284-301.

[7]

S. C. Jiang, N. Ma and H. J. Li, Effects of thermal properties and geometrical dimensions on skin burn injuries, Burns, 28 (2002), 713-717. doi: 10.1016/S0305-4179(02)00104-3.

[8]

Z. Li, The immersed interface method using a finite element formulation, Applied Numerical Mathematics, 27 (1998), 253-267. doi: 10.1016/S0168-9274(98)00015-4.

[9]

Z. Li, T. Lin, Y. Lin and R. C. Rogers, An immersed finite element space and its approximation capability, Numer. Methods. Partial Differential Equations, 20 (2004), 338-367. doi: 10.1002/num.10092.

[10]

Z. Li, T. Lin and X. Wu, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96 (2003), 61-98. doi: 10.1007/s00211-003-0473-x.

[11]

T. Lin, Y. Lin and W. Sun, Error estimation of a class quadratic immersed finite element methods for elliptic interface problems, Discrete and Continuous Dynamical Systems Series-B, 7 (2007), 807-823. doi: 10.3934/dcdsb.2007.7.807.

[12]

E. H. Liu, G. M. Saidel and H. Harasaki, Model analysis of tissue responses totransient and chronic heating, Ann. Biomed. Eng, 31 (2003), 1007-1048.

[13]

H. H. Pennes, Analysis of tissue and arterial blood temperature in the resting forearm, J. Appl. Physiol., 1 (1948), 93-122.

[14]

V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, Springer, 2006.

[15]

D. A. Tori and J. D. Dale, A finite element model of skin subjected to a flasf fire, J. Biomed Eng., 116 (1994), 250-255.

[1]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[2]

Tao Lin, Yanping Lin, Weiwei Sun. Error estimation of a class of quadratic immersed finite element methods for elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 807-823. doi: 10.3934/dcdsb.2007.7.807

[3]

Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175

[4]

Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373

[5]

Ben A. Vanderlei, Matthew M. Hopkins, Lisa J. Fauci. Error estimation for immersed interface solutions. Discrete and Continuous Dynamical Systems - B, 2012, 17 (4) : 1185-1203. doi: 10.3934/dcdsb.2012.17.1185

[6]

Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89

[7]

Derrick Jones, Xu Zhang. A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29 (5) : 3171-3191. doi: 10.3934/era.2021032

[8]

Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838

[9]

Na Peng, Jiayu Han, Jing An. An efficient finite element method and error analysis for fourth order problems in a spherical domain. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022021

[10]

Harvey A. R. Williams, Lisa J. Fauci, Donald P. Gaver III. Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 519-540. doi: 10.3934/dcdsb.2009.11.519

[11]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[12]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[13]

Lunji Song, Wenya Qi, Kaifang Liu, Qingxian Gu. A new over-penalized weak galerkin finite element method. Part Ⅱ: Elliptic interface problems. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2581-2598. doi: 10.3934/dcdsb.2020196

[14]

Xiaoxiao He, Fei Song, Weibing Deng. A stabilized nonconforming Nitsche's extended finite element method for Stokes interface problems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2849-2871. doi: 10.3934/dcdsb.2021163

[15]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[16]

Zhongyi Huang. Tailored finite point method for the interface problem. Networks and Heterogeneous Media, 2009, 4 (1) : 91-106. doi: 10.3934/nhm.2009.4.91

[17]

Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluids-structure interaction in sperm motility. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 343-355. doi: 10.3934/dcdsb.2011.15.343

[18]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[19]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[20]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]