• Previous Article
    Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model
  • DCDS-B Home
  • This Issue
  • Next Article
    Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells
November  2015, 20(9): 3235-3254. doi: 10.3934/dcdsb.2015.20.3235

Global classical solutions of a 3D chemotaxis-Stokes system with rotation

1. 

School of Science, Xihua University, Chengdu 610039, China

2. 

Institut für Mathematik, Universität Paderborn, Paderborn 33098, Germany

Received  September 2014 Revised  December 2014 Published  September 2015

This paper considers the chemotaxis-Stokes system $$\begin{cases} \displaystyle n_t+u\cdot\nabla n=\Delta n-\nabla\cdot(nS(x,n,c)\cdot\nabla c), &(x,t)\in \Omega\times (0,T),\\ \displaystyle c_t+u\cdot\nabla c=\Delta c-nc, &(x,t)\in\Omega\times (0,T),\qquad(\star)\\ \displaystyle u_t=\Delta u+\nabla P+n\nabla\phi , &(x,t)\in\Omega\times (0,T),\\ \nabla\cdot u=0,&(x,t)\in\Omega\times (0,T). \end{cases}$$ under no-flux boundary conditions in a bounded domain $\Omega \subset \mathbb{R}^3$ with smooth boundary. Here $S$ is a matrix-valued sensitivity satisfying $|S(x,n,c)|<\tilde{C}(1+n)^{-\alpha}$ with some $\tilde{C}>0$ and $\alpha>0$. Although $(\star)$ does not possess the natural gradient-like functional structure available when $S$ reduces to a scalar function, we can still establish a new energy type inequality. Based on this inequality we achieve a coupled estimate for arbitrarily high Lebesgue norms of $n$ and $\nabla c$. This helps us to finally obtain the existence of a global classical solution when $\alpha$ is bigger than $\frac{1}{6}$.
Citation: Yulan Wang, Xinru Cao. Global classical solutions of a 3D chemotaxis-Stokes system with rotation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3235-3254. doi: 10.3934/dcdsb.2015.20.3235
References:
[1]

X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation,, Nonlinearity, 27 (2014), 1899.  doi: 10.1088/0951-7715/27/8/1899.  Google Scholar

[2]

M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations,, Discrete Continuous Dynam. Systems, 33 (2013), 2271.  doi: 10.3934/dcds.2013.33.2271.  Google Scholar

[3]

M. Chae, K. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations,, Comm. Part. Diff. Eqs., 39 (2014), 1205.  doi: 10.1080/03605302.2013.852224.  Google Scholar

[4]

R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Part. Diff. Eqs., 35 (2010), 1635.  doi: 10.1080/03605302.2010.497199.  Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[6]

Y. Giga and H. Sohr, Abstract $L^p$ estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Anal., 102 (1991), 72.  doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981).   Google Scholar

[8]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[9]

T. Li, A. Suen, M. Winkler and C. Xue, Gobal small-data solutions in a chemotaxis system with rotation,, Math. Mod. Meth. Appl. Sci., (2015), 721.   Google Scholar

[10]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence,, Ann. I. H. Poincaré Anal. Non Linéaire, 28 (2011), 643.  doi: 10.1016/j.anihpc.2011.04.005.  Google Scholar

[11]

J. L. Lions, Équations Différentielles Opérationnelles et Problémes aux Limites,, Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar

[12]

A. Lorz, Coupled chemotaxis fluid equations,, Math. Mod. Meth. Appl. Sci., 20 (2010), 987.  doi: 10.1142/S0218202510004507.  Google Scholar

[13]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968).   Google Scholar

[14]

Y. Lou, Y. Tao and M. Winkler, Approching the ideal free distribution in two-species copetition models with fitness-dependent dispersal,, SIAM J. Math. Anal., 46 (2014), 1228.  doi: 10.1137/130934246.  Google Scholar

[15]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501.   Google Scholar

[16]

M. M. Porzio and V. Vespri, Hölder estimate for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146.  doi: 10.1006/jdeq.1993.1045.  Google Scholar

[17]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up,Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007).   Google Scholar

[18]

H. Sohr, The Navier-Stokes Equations. an Elementary Functional Analytic Approach,, Birkhăuser, (2001).  doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[19]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[20]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685.  doi: 10.1137/100802943.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[23]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion,, Ann. I. H. Poincaré, 30 (2013), 157.  doi: 10.1016/j.anihpc.2012.07.002.  Google Scholar

[24]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proc. Nat. Acad. Sci., 102 (2005), 2277.   Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops,, Comm. Part. Diff. Eqs., 37 (2012), 319.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[27]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[28]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, (2015).  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[29]

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population,, SIAM J. Appl. Math., 70 (2009), 133.  doi: 10.1137/070711505.  Google Scholar

[30]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations,, SIAM J. Math. Anal., 46 (2014), 3078.  doi: 10.1137/130936920.  Google Scholar

show all references

References:
[1]

X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation,, Nonlinearity, 27 (2014), 1899.  doi: 10.1088/0951-7715/27/8/1899.  Google Scholar

[2]

M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations,, Discrete Continuous Dynam. Systems, 33 (2013), 2271.  doi: 10.3934/dcds.2013.33.2271.  Google Scholar

[3]

M. Chae, K. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations,, Comm. Part. Diff. Eqs., 39 (2014), 1205.  doi: 10.1080/03605302.2013.852224.  Google Scholar

[4]

R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Comm. Part. Diff. Eqs., 35 (2010), 1635.  doi: 10.1080/03605302.2010.497199.  Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[6]

Y. Giga and H. Sohr, Abstract $L^p$ estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains,, J. Funct. Anal., 102 (1991), 72.  doi: 10.1016/0022-1236(91)90136-S.  Google Scholar

[7]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Springer, (1981).   Google Scholar

[8]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.  doi: 10.1016/j.jde.2014.01.028.  Google Scholar

[9]

T. Li, A. Suen, M. Winkler and C. Xue, Gobal small-data solutions in a chemotaxis system with rotation,, Math. Mod. Meth. Appl. Sci., (2015), 721.   Google Scholar

[10]

J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence,, Ann. I. H. Poincaré Anal. Non Linéaire, 28 (2011), 643.  doi: 10.1016/j.anihpc.2011.04.005.  Google Scholar

[11]

J. L. Lions, Équations Différentielles Opérationnelles et Problémes aux Limites,, Die Grundlehren der mathematischen Wissenschaften, (1961).   Google Scholar

[12]

A. Lorz, Coupled chemotaxis fluid equations,, Math. Mod. Meth. Appl. Sci., 20 (2010), 987.  doi: 10.1142/S0218202510004507.  Google Scholar

[13]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968).   Google Scholar

[14]

Y. Lou, Y. Tao and M. Winkler, Approching the ideal free distribution in two-species copetition models with fitness-dependent dispersal,, SIAM J. Math. Anal., 46 (2014), 1228.  doi: 10.1137/130934246.  Google Scholar

[15]

K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501.   Google Scholar

[16]

M. M. Porzio and V. Vespri, Hölder estimate for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146.  doi: 10.1006/jdeq.1993.1045.  Google Scholar

[17]

P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up,Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007).   Google Scholar

[18]

H. Sohr, The Navier-Stokes Equations. an Elementary Functional Analytic Approach,, Birkhăuser, (2001).  doi: 10.1007/978-3-0348-8255-2.  Google Scholar

[19]

Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria,, J. Math. Anal. Appl., 381 (2011), 521.  doi: 10.1016/j.jmaa.2011.02.041.  Google Scholar

[20]

Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source,, SIAM J. Math. Anal., 43 (2011), 685.  doi: 10.1137/100802943.  Google Scholar

[21]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.  doi: 10.1016/j.jde.2011.08.019.  Google Scholar

[22]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520.  doi: 10.1016/j.jde.2011.07.010.  Google Scholar

[23]

Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion,, Ann. I. H. Poincaré, 30 (2013), 157.  doi: 10.1016/j.anihpc.2012.07.002.  Google Scholar

[24]

I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines,, Proc. Nat. Acad. Sci., 102 (2005), 2277.   Google Scholar

[25]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.  doi: 10.1016/j.jde.2010.02.008.  Google Scholar

[26]

M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops,, Comm. Part. Diff. Eqs., 37 (2012), 319.  doi: 10.1080/03605302.2011.591865.  Google Scholar

[27]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455.  doi: 10.1007/s00205-013-0678-9.  Google Scholar

[28]

M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system,, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, (2015).  doi: 10.1016/j.anihpc.2015.05.002.  Google Scholar

[29]

C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population,, SIAM J. Appl. Math., 70 (2009), 133.  doi: 10.1137/070711505.  Google Scholar

[30]

Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations,, SIAM J. Math. Anal., 46 (2014), 3078.  doi: 10.1137/130936920.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[3]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[4]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[5]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[8]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[9]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[10]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[11]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[18]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (41)

Other articles
by authors

[Back to Top]