-
Previous Article
Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model
- DCDS-B Home
- This Issue
-
Next Article
Global dynamics for viral infection model with Beddington-DeAngelis functional response and an eclipse stage of infected cells
Global classical solutions of a 3D chemotaxis-Stokes system with rotation
1. | School of Science, Xihua University, Chengdu 610039, China |
2. | Institut für Mathematik, Universität Paderborn, Paderborn 33098, Germany |
References:
[1] |
X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.
doi: 10.1088/0951-7715/27/8/1899. |
[2] |
M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Continuous Dynam. Systems, 33 (2013), 2271-2297.
doi: 10.3934/dcds.2013.33.2271. |
[3] |
M. Chae, K. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Part. Diff. Eqs., 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224. |
[4] |
R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Part. Diff. Eqs., 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[5] |
Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3. |
[6] |
Y. Giga and H. Sohr, Abstract $L^p$ estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.
doi: 10.1016/0022-1236(91)90136-S. |
[7] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin/Heidelberg, 1981. |
[8] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028. |
[9] |
T. Li, A. Suen, M. Winkler and C. Xue, Gobal small-data solutions in a chemotaxis system with rotation, Math. Mod. Meth. Appl. Sci., 25(2015), 721-747. |
[10] |
J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. I. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[11] |
J. L. Lions, Équations Différentielles Opérationnelles et Problémes aux Limites, Die Grundlehren der mathematischen Wissenschaften, Springer, 1961. |
[12] |
A. Lorz, Coupled chemotaxis fluid equations, Math. Mod. Meth. Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507. |
[13] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Providence, RI, 1968. |
[14] |
Y. Lou, Y. Tao and M. Winkler, Approching the ideal free distribution in two-species copetition models with fitness-dependent dispersal, SIAM J. Math. Anal., 46 (2014), 1228-1262.
doi: 10.1137/130934246. |
[15] |
K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. |
[16] |
M. M. Porzio and V. Vespri, Hölder estimate for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[17] |
P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up,Global Existence and Steady States, Birkhäuser Advanced Texts, Basel/Boston/Berlin, 2007. |
[18] |
H. Sohr, The Navier-Stokes Equations. an Elementary Functional Analytic Approach, Birkhăuser, Basel, 2001.
doi: 10.1007/978-3-0348-8255-2. |
[19] |
Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.
doi: 10.1016/j.jmaa.2011.02.041. |
[20] |
Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.
doi: 10.1137/100802943. |
[21] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[22] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[23] |
Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. I. H. Poincaré, Anal. Non Linéaire., 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002. |
[24] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Acad. Sci., USA 102 (2005), 2277-2282. |
[25] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[26] |
M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Part. Diff. Eqs., 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[27] |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[28] |
M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, (2015), arXiv:1410.5929.
doi: 10.1016/j.anihpc.2015.05.002. |
[29] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
[30] |
Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.
doi: 10.1137/130936920. |
show all references
References:
[1] |
X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.
doi: 10.1088/0951-7715/27/8/1899. |
[2] |
M. Chae, K. Kang and J. Lee, Existence of smooth solutions to coupled chemotaxis-fluid equations, Discrete Continuous Dynam. Systems, 33 (2013), 2271-2297.
doi: 10.3934/dcds.2013.33.2271. |
[3] |
M. Chae, K. Kang and J. Lee, Global Existence and temporal decay in Keller-Segel models coupled to fluid equations, Comm. Part. Diff. Eqs., 39 (2014), 1205-1235.
doi: 10.1080/03605302.2013.852224. |
[4] |
R. Duan, A. Lorz and P. A. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Comm. Part. Diff. Eqs., 35 (2010), 1635-1673.
doi: 10.1080/03605302.2010.497199. |
[5] |
Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system, J. Differential Equations, 62 (1986), 186-212.
doi: 10.1016/0022-0396(86)90096-3. |
[6] |
Y. Giga and H. Sohr, Abstract $L^p$ estimate for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, J. Funct. Anal., 102 (1991), 72-94.
doi: 10.1016/0022-1236(91)90136-S. |
[7] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin/Heidelberg, 1981. |
[8] |
S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains, J. Differential Equations, 256 (2014), 2993-3010.
doi: 10.1016/j.jde.2014.01.028. |
[9] |
T. Li, A. Suen, M. Winkler and C. Xue, Gobal small-data solutions in a chemotaxis system with rotation, Math. Mod. Meth. Appl. Sci., 25(2015), 721-747. |
[10] |
J. Liu and A. Lorz, A coupled chemotaxis-fluid model: Global existence, Ann. I. H. Poincaré Anal. Non Linéaire, 28 (2011), 643-652.
doi: 10.1016/j.anihpc.2011.04.005. |
[11] |
J. L. Lions, Équations Différentielles Opérationnelles et Problémes aux Limites, Die Grundlehren der mathematischen Wissenschaften, Springer, 1961. |
[12] |
A. Lorz, Coupled chemotaxis fluid equations, Math. Mod. Meth. Appl. Sci., 20 (2010), 987-1004.
doi: 10.1142/S0218202510004507. |
[13] |
O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and quasi-Linear Equations of Parabolic Type, Amer. Math. Soc. Transl., Providence, RI, 1968. |
[14] |
Y. Lou, Y. Tao and M. Winkler, Approching the ideal free distribution in two-species copetition models with fitness-dependent dispersal, SIAM J. Math. Anal., 46 (2014), 1228-1262.
doi: 10.1137/130934246. |
[15] |
K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. |
[16] |
M. M. Porzio and V. Vespri, Hölder estimate for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differential Equations, 103 (1993), 146-178.
doi: 10.1006/jdeq.1993.1045. |
[17] |
P. Quittner and Ph. Souplet, Superlinear Parabolic Problems. Blow-up,Global Existence and Steady States, Birkhäuser Advanced Texts, Basel/Boston/Berlin, 2007. |
[18] |
H. Sohr, The Navier-Stokes Equations. an Elementary Functional Analytic Approach, Birkhăuser, Basel, 2001.
doi: 10.1007/978-3-0348-8255-2. |
[19] |
Y. Tao, Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., 381 (2011), 521-529.
doi: 10.1016/j.jmaa.2011.02.041. |
[20] |
Y. Tao and M. Winkler, A chemotaxis-haptotaxis model: The roles of nonlinear diffusion and logistic source, SIAM J. Math. Anal., 43 (2011), 685-704.
doi: 10.1137/100802943. |
[21] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.
doi: 10.1016/j.jde.2011.08.019. |
[22] |
Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differential Equations, 252 (2012), 2520-2543.
doi: 10.1016/j.jde.2011.07.010. |
[23] |
Y. Tao and M. Winkler, Locally bounded global solutions in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion, Ann. I. H. Poincaré, Anal. Non Linéaire., 30 (2013), 157-178.
doi: 10.1016/j.anihpc.2012.07.002. |
[24] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Acad. Sci., USA 102 (2005), 2277-2282. |
[25] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[26] |
M. Winkler, Global large-data solutions in a chemotaxis-(Navier-)Stokes system modeling cellular swimming in fluid drops, Comm. Part. Diff. Eqs., 37 (2012), 319-351.
doi: 10.1080/03605302.2011.591865. |
[27] |
M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system, Arch. Ration. Mech. Anal., 211 (2014), 455-487.
doi: 10.1007/s00205-013-0678-9. |
[28] |
M. Winkler, Global weak solutions in a three-dimensional chemotaxis-Navier-Stokes system, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, (2015), arXiv:1410.5929.
doi: 10.1016/j.anihpc.2015.05.002. |
[29] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
[30] |
Q. Zhang and X. Zheng, Global well-posedness for the two-dimensional incompressible chemotaxis-Navier-Stokes equations, SIAM J. Math. Anal., 46 (2014), 3078-3105.
doi: 10.1137/130936920. |
[1] |
Sachiko Ishida. Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3463-3482. doi: 10.3934/dcds.2015.35.3463 |
[2] |
Johannes Lankeit, Yulan Wang. Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6099-6121. doi: 10.3934/dcds.2017262 |
[3] |
Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324 |
[4] |
Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901 |
[5] |
Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 |
[6] |
Jiayi Han, Changchun Liu. Global existence for a two-species chemotaxis-Navier-Stokes system with $ p $-Laplacian. Electronic Research Archive, 2021, 29 (5) : 3509-3533. doi: 10.3934/era.2021050 |
[7] |
Xiaoyu Chen, Jijie Zhao, Qian Zhang. Global existence of weak solutions for the 3D axisymmetric chemotaxis-Navier-Stokes equations with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 4489-4522. doi: 10.3934/dcds.2022062 |
[8] |
Marcel Freitag. Global existence and boundedness in a chemorepulsion system with superlinear diffusion. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5943-5961. doi: 10.3934/dcds.2018258 |
[9] |
Mengyao Ding, Wei Wang. Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4665-4684. doi: 10.3934/dcdsb.2018328 |
[10] |
Wei Wang, Yan Li, Hao Yu. Global boundedness in higher dimensions for a fully parabolic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3663-3669. doi: 10.3934/dcdsb.2017147 |
[11] |
Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168 |
[12] |
Chunhua Jin. Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1675-1688. doi: 10.3934/dcdsb.2018069 |
[13] |
Xiangdong Zhao. Global boundedness of classical solutions to a logistic chemotaxis system with singular sensitivity. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5095-5100. doi: 10.3934/dcdsb.2020334 |
[14] |
Chun Huang. Global boundedness for a chemotaxis-competition system with signal dependent sensitivity and loop. Electronic Research Archive, 2021, 29 (5) : 3261-3279. doi: 10.3934/era.2021037 |
[15] |
Ying Zhang. Wave breaking and global existence for the periodic rotation-Camassa-Holm system. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2243-2257. doi: 10.3934/dcds.2017097 |
[16] |
T. Hillen, K. Painter, Christian Schmeiser. Global existence for chemotaxis with finite sampling radius. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 125-144. doi: 10.3934/dcdsb.2007.7.125 |
[17] |
Minghua Yang, Zunwei Fu, Jinyi Sun. Global solutions to Chemotaxis-Navier-Stokes equations in critical Besov spaces. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3427-3460. doi: 10.3934/dcdsb.2018284 |
[18] |
Pan Zheng. Global boundedness and decay for a multi-dimensional chemotaxis-haptotaxis system with nonlinear diffusion. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 2039-2056. doi: 10.3934/dcdsb.2016035 |
[19] |
Guoqiang Ren, Bin Liu. Global boundedness of solutions to a chemotaxis-fluid system with singular sensitivity and logistic source. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3843-3883. doi: 10.3934/cpaa.2020170 |
[20] |
Hong Yi, Chunlai Mu, Shuyan Qiu, Lu Xu. Global boundedness of radial solutions to a parabolic-elliptic chemotaxis system with flux limitation and nonlinear signal production. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3825-3849. doi: 10.3934/cpaa.2021133 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]