November  2015, 20(9): 3267-3299. doi: 10.3934/dcdsb.2015.20.3267

Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon

1. 

Grupo de Dinámica No Lineal (DNL), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, Madrid E-28015, Spain, Spain, Spain

Received  June 2013 Revised  May 2014 Published  September 2015

Viscoelastic fluids represent a major challenge both from an engineering and from a mathematical point of view. Recently, we have shown that viscoelasticity induces chaos in closed-loop thermosyphons. This induced behavior might interfere with the engineering choice of using a specific fluid. In this work we show that the addition of a solute to the fluid can, under some conditions, stabilize the system due to thermodiffusion (also known as the Soret effect). Unexpectedly, the role of viscoelasticity is opposite to the case of single-element fluids, where it (generically) induces chaos. Our results are derived by combining analytical results based on the projection of the dynamics on an inertial manifold as well as numerical simulations characterized by the calculation of Lyapunov exponents.
Citation: Justine Yasappan, Ángela Jiménez-Casas, Mario Castro. Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 3267-3299. doi: 10.3934/dcdsb.2015.20.3267
References:
[1]

H. A. Barnes, A Handbook of Elementary Rheology, Institute of Non-Newtonian Fluid Mechanics, Univesity of Wales, 2000.

[2]

A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, in New Trends in System Theory, Progr. Systems Control Theory, 7 (1991), 128-135. doi: 10.1007/978-1-4612-0439-8_15.

[3]

M. E. Bravo-Gutiérrez, C. Mario and A. P. Hernández-Machado, Controlling viscoelastic flow in microchannels with slip, Langmuir, ACS Publications, 27 (2011), 2075-2079.

[4]

F. Debbasch and J. P. Rivet, The Ludwig-Soret effect and stochastic processes, J. Chem.Thermodynamics, 43 (2011), 300-306. doi: 10.1016/j.jct.2010.09.010.

[5]

R. Greif, Y. Zvirin and A. Mertol, The transient and stability behavior of a natural convection loop, J. Heat Transfer, 101 (1979), 684-688. doi: 10.1115/1.3451057.

[6]

W. N. Findley et al., Creep and Relaxation of Nonlinear Viscoelastic Materials, (Dover Publications, New York, 1989).

[7]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolution equations, J. Diff. Equ., 73 (1988), 309-353. doi: 10.1016/0022-0396(88)90110-6.

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988.

[9]

J. E. Hart, A model of flow in a closed-loop thermosyphon including the soret effect, J. of Heat Transfer, 107 (1985), 840-849. doi: 10.1115/1.3247512.

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics 840, Springer-Verlag, Berlin, New York, 1981.

[11]

M. A. Herrero and J. J. L. Velazquez, Stability analysis of a closed thermosyphon, European J. Appl. Math., 1 (1990), 1-24. doi: 10.1017/S0956792500000036.

[12]

St. Hollinger and M. Lucke, Influence of the Soret effect on convection of binary fluids, Phys. Rev. E, 57 (1998), 4238-4249.

[13]

F. P. Incropera, T. L. Bergman, A. S. Lavine and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2011.

[14]

A. Jiménez-Casas, A coupled ODE/PDE system governing a thermosyphon model, Nonlin. Analy., 47 (2001), 687-692. doi: 10.1016/S0362-546X(01)00212-7.

[15]

A. Jiménez-Casas and A. M-L. Ovejero, Numerical analysis of a closed-loop thermosyphon including the Soret effect, Appl. Math. Comput., 124 (2001), 289-318. doi: 10.1016/S0096-3003(00)00075-8.

[16]

A. Jiménez-Casas and A. Rodríguez-Bernal, Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect, Math. Meth. in the Appl. Sci., 22 (1999), 117-137. doi: 10.1002/(SICI)1099-1476(19990125)22:2<117::AID-MMA25>3.0.CO;2-0.

[17]

A. Jiménez Casas and A. Rodríguez-Bernal, Dinámica no Lineal: Modelos de Campo de Fase y un Termosifón Cerrado, Editorial Académica Española, (Lap Lambert Academic Publishing GmbH and Co. KG, Germany 2012).

[18]

J. B. Keller, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26 (1966), 599-606. doi: 10.1017/S0022112066001423.

[19]

P. A. Lakshminarayana, P. V. S. N. Murthy and R. S. R. Gorla, Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium, J. Fluid Mech., 612 (2008), 1-19. doi: 10.1017/S0022112008002619.

[20]

A. Liñan, Analytical description of chaotic oscillations in a toroidal thermosyphon, in Fluid Physics, Lecture Notes of Summer Schools, (M.G. Velarde, C.I. Christov, eds.,) World Scientific, River Edge, NJ, (1994), 507-523.

[21]

F. Morrison, Understanding Rheology, (Oxford University Press, USA, 2001).

[22]

A. Rodríguez-Bernal, Attractor ansyphon, Journal of Mathematical Analysis and Applications, 193 (1995), 942-965. doi: 10.1006/jmaa.1995.1276.

[23]

A. Rodríguez-Bernal, Inertial manifolds for dissipative semiflows in Banach spaces, Appl. Anal., 37 (1990), 95-141. doi: 10.1080/00036819008839943.

[24]

A. Rodríguez-Bernal and E. S. Van Vleck, Complex oscillations in a closed thermosyphon, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 41-56. doi: 10.1142/S0218127498000048.

[25]

A. Rodríguez-Bernal and E. S. Van Vleck, Diffusion induced chaos in a closed loop thermosyphon, SIAM J. Appl. Math., 58 (1998), 1072-1093. doi: 10.1137/S0036139996304184.

[26]

A. M. Stuart, Pertubration theory of infinite-dimensiional dyanamical systems, in Theory and Numerics of Ordinary and Partial differential Equations, M.Ainsworth, J. Levesley, W.A.Light and M. Marletta, eds., (Oxford University Press, Oxford, UK, 1994).

[27]

G. B. Thurston and N. M. Henderson, Effects of flow geometry on blood viscoelasticity, Biorheology, 43 (2006), 729-746.

[28]

J. J. L. Velázquez, On the dynamics of a closed thermosyphon, SIAM J.Appl. Math., 54 (1994), 1561-1593. doi: 10.1137/S0036139993246787.

[29]

P. Welander, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29 (1967), 17-30.

[30]

A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285-317. doi: 10.1016/0167-2789(85)90011-9.

[31]

S. Wolfram, The mathematica book, Cambridge University Press, 1999.

[32]

J. Yasappan, A. Jiménez-Casas and M. Castro, Asymptotic behavior of a viscoelastic fluid in a closed loop thermosyphon: Physical derivation, asymptotic analysis and numerical experiments, Abstract and Applied Analysis, 2013 Art. ID 748683, (2013), 20pp.

show all references

References:
[1]

H. A. Barnes, A Handbook of Elementary Rheology, Institute of Non-Newtonian Fluid Mechanics, Univesity of Wales, 2000.

[2]

A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, in New Trends in System Theory, Progr. Systems Control Theory, 7 (1991), 128-135. doi: 10.1007/978-1-4612-0439-8_15.

[3]

M. E. Bravo-Gutiérrez, C. Mario and A. P. Hernández-Machado, Controlling viscoelastic flow in microchannels with slip, Langmuir, ACS Publications, 27 (2011), 2075-2079.

[4]

F. Debbasch and J. P. Rivet, The Ludwig-Soret effect and stochastic processes, J. Chem.Thermodynamics, 43 (2011), 300-306. doi: 10.1016/j.jct.2010.09.010.

[5]

R. Greif, Y. Zvirin and A. Mertol, The transient and stability behavior of a natural convection loop, J. Heat Transfer, 101 (1979), 684-688. doi: 10.1115/1.3451057.

[6]

W. N. Findley et al., Creep and Relaxation of Nonlinear Viscoelastic Materials, (Dover Publications, New York, 1989).

[7]

C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolution equations, J. Diff. Equ., 73 (1988), 309-353. doi: 10.1016/0022-0396(88)90110-6.

[8]

J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988.

[9]

J. E. Hart, A model of flow in a closed-loop thermosyphon including the soret effect, J. of Heat Transfer, 107 (1985), 840-849. doi: 10.1115/1.3247512.

[10]

D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics 840, Springer-Verlag, Berlin, New York, 1981.

[11]

M. A. Herrero and J. J. L. Velazquez, Stability analysis of a closed thermosyphon, European J. Appl. Math., 1 (1990), 1-24. doi: 10.1017/S0956792500000036.

[12]

St. Hollinger and M. Lucke, Influence of the Soret effect on convection of binary fluids, Phys. Rev. E, 57 (1998), 4238-4249.

[13]

F. P. Incropera, T. L. Bergman, A. S. Lavine and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2011.

[14]

A. Jiménez-Casas, A coupled ODE/PDE system governing a thermosyphon model, Nonlin. Analy., 47 (2001), 687-692. doi: 10.1016/S0362-546X(01)00212-7.

[15]

A. Jiménez-Casas and A. M-L. Ovejero, Numerical analysis of a closed-loop thermosyphon including the Soret effect, Appl. Math. Comput., 124 (2001), 289-318. doi: 10.1016/S0096-3003(00)00075-8.

[16]

A. Jiménez-Casas and A. Rodríguez-Bernal, Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect, Math. Meth. in the Appl. Sci., 22 (1999), 117-137. doi: 10.1002/(SICI)1099-1476(19990125)22:2<117::AID-MMA25>3.0.CO;2-0.

[17]

A. Jiménez Casas and A. Rodríguez-Bernal, Dinámica no Lineal: Modelos de Campo de Fase y un Termosifón Cerrado, Editorial Académica Española, (Lap Lambert Academic Publishing GmbH and Co. KG, Germany 2012).

[18]

J. B. Keller, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26 (1966), 599-606. doi: 10.1017/S0022112066001423.

[19]

P. A. Lakshminarayana, P. V. S. N. Murthy and R. S. R. Gorla, Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium, J. Fluid Mech., 612 (2008), 1-19. doi: 10.1017/S0022112008002619.

[20]

A. Liñan, Analytical description of chaotic oscillations in a toroidal thermosyphon, in Fluid Physics, Lecture Notes of Summer Schools, (M.G. Velarde, C.I. Christov, eds.,) World Scientific, River Edge, NJ, (1994), 507-523.

[21]

F. Morrison, Understanding Rheology, (Oxford University Press, USA, 2001).

[22]

A. Rodríguez-Bernal, Attractor ansyphon, Journal of Mathematical Analysis and Applications, 193 (1995), 942-965. doi: 10.1006/jmaa.1995.1276.

[23]

A. Rodríguez-Bernal, Inertial manifolds for dissipative semiflows in Banach spaces, Appl. Anal., 37 (1990), 95-141. doi: 10.1080/00036819008839943.

[24]

A. Rodríguez-Bernal and E. S. Van Vleck, Complex oscillations in a closed thermosyphon, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 41-56. doi: 10.1142/S0218127498000048.

[25]

A. Rodríguez-Bernal and E. S. Van Vleck, Diffusion induced chaos in a closed loop thermosyphon, SIAM J. Appl. Math., 58 (1998), 1072-1093. doi: 10.1137/S0036139996304184.

[26]

A. M. Stuart, Pertubration theory of infinite-dimensiional dyanamical systems, in Theory and Numerics of Ordinary and Partial differential Equations, M.Ainsworth, J. Levesley, W.A.Light and M. Marletta, eds., (Oxford University Press, Oxford, UK, 1994).

[27]

G. B. Thurston and N. M. Henderson, Effects of flow geometry on blood viscoelasticity, Biorheology, 43 (2006), 729-746.

[28]

J. J. L. Velázquez, On the dynamics of a closed thermosyphon, SIAM J.Appl. Math., 54 (1994), 1561-1593. doi: 10.1137/S0036139993246787.

[29]

P. Welander, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29 (1967), 17-30.

[30]

A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285-317. doi: 10.1016/0167-2789(85)90011-9.

[31]

S. Wolfram, The mathematica book, Cambridge University Press, 1999.

[32]

J. Yasappan, A. Jiménez-Casas and M. Castro, Asymptotic behavior of a viscoelastic fluid in a closed loop thermosyphon: Physical derivation, asymptotic analysis and numerical experiments, Abstract and Applied Analysis, 2013 Art. ID 748683, (2013), 20pp.

[1]

A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375

[2]

Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096

[3]

Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231

[4]

Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255

[5]

Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331

[6]

Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565

[7]

Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021043

[8]

Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212

[9]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[10]

Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138

[11]

Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037

[12]

Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071

[13]

Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068

[14]

Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657

[15]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[16]

Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417

[17]

Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010

[18]

Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551

[19]

Fei Jiang. Stabilizing effect of elasticity on the motion of viscoelastic/elastic fluids. Electronic Research Archive, 2021, 29 (6) : 4051-4074. doi: 10.3934/era.2021071

[20]

Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (130)
  • HTML views (0)
  • Cited by (2)

[Back to Top]