- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model
Stabilizing interplay between thermodiffusion and viscoelasticity in a closed-loop thermosyphon
1. | Grupo de Dinámica No Lineal (DNL), Escuela Técnica Superior de Ingeniería (ICAI), Universidad Pontificia Comillas, Madrid E-28015, Spain, Spain, Spain |
References:
[1] |
H. A. Barnes, A Handbook of Elementary Rheology, Institute of Non-Newtonian Fluid Mechanics, Univesity of Wales, 2000. |
[2] |
A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, in New Trends in System Theory, Progr. Systems Control Theory, 7 (1991), 128-135.
doi: 10.1007/978-1-4612-0439-8_15. |
[3] |
M. E. Bravo-Gutiérrez, C. Mario and A. P. Hernández-Machado, Controlling viscoelastic flow in microchannels with slip, Langmuir, ACS Publications, 27 (2011), 2075-2079. |
[4] |
F. Debbasch and J. P. Rivet, The Ludwig-Soret effect and stochastic processes, J. Chem.Thermodynamics, 43 (2011), 300-306.
doi: 10.1016/j.jct.2010.09.010. |
[5] |
R. Greif, Y. Zvirin and A. Mertol, The transient and stability behavior of a natural convection loop, J. Heat Transfer, 101 (1979), 684-688.
doi: 10.1115/1.3451057. |
[6] |
W. N. Findley et al., Creep and Relaxation of Nonlinear Viscoelastic Materials, (Dover Publications, New York, 1989). |
[7] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolution equations, J. Diff. Equ., 73 (1988), 309-353.
doi: 10.1016/0022-0396(88)90110-6. |
[8] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988. |
[9] |
J. E. Hart, A model of flow in a closed-loop thermosyphon including the soret effect, J. of Heat Transfer, 107 (1985), 840-849.
doi: 10.1115/1.3247512. |
[10] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics 840, Springer-Verlag, Berlin, New York, 1981. |
[11] |
M. A. Herrero and J. J. L. Velazquez, Stability analysis of a closed thermosyphon, European J. Appl. Math., 1 (1990), 1-24.
doi: 10.1017/S0956792500000036. |
[12] |
St. Hollinger and M. Lucke, Influence of the Soret effect on convection of binary fluids, Phys. Rev. E, 57 (1998), 4238-4249. |
[13] |
F. P. Incropera, T. L. Bergman, A. S. Lavine and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2011. |
[14] |
A. Jiménez-Casas, A coupled ODE/PDE system governing a thermosyphon model, Nonlin. Analy., 47 (2001), 687-692.
doi: 10.1016/S0362-546X(01)00212-7. |
[15] |
A. Jiménez-Casas and A. M-L. Ovejero, Numerical analysis of a closed-loop thermosyphon including the Soret effect, Appl. Math. Comput., 124 (2001), 289-318.
doi: 10.1016/S0096-3003(00)00075-8. |
[16] |
A. Jiménez-Casas and A. Rodríguez-Bernal, Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect, Math. Meth. in the Appl. Sci., 22 (1999), 117-137.
doi: 10.1002/(SICI)1099-1476(19990125)22:2<117::AID-MMA25>3.0.CO;2-0. |
[17] |
A. Jiménez Casas and A. Rodríguez-Bernal, Dinámica no Lineal: Modelos de Campo de Fase y un Termosifón Cerrado, Editorial Académica Española, (Lap Lambert Academic Publishing GmbH and Co. KG, Germany 2012). |
[18] |
J. B. Keller, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26 (1966), 599-606.
doi: 10.1017/S0022112066001423. |
[19] |
P. A. Lakshminarayana, P. V. S. N. Murthy and R. S. R. Gorla, Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium, J. Fluid Mech., 612 (2008), 1-19.
doi: 10.1017/S0022112008002619. |
[20] |
A. Liñan, Analytical description of chaotic oscillations in a toroidal thermosyphon, in Fluid Physics, Lecture Notes of Summer Schools, (M.G. Velarde, C.I. Christov, eds.,) World Scientific, River Edge, NJ, (1994), 507-523. |
[21] |
F. Morrison, Understanding Rheology, (Oxford University Press, USA, 2001). |
[22] |
A. Rodríguez-Bernal, Attractor ansyphon, Journal of Mathematical Analysis and Applications, 193 (1995), 942-965.
doi: 10.1006/jmaa.1995.1276. |
[23] |
A. Rodríguez-Bernal, Inertial manifolds for dissipative semiflows in Banach spaces, Appl. Anal., 37 (1990), 95-141.
doi: 10.1080/00036819008839943. |
[24] |
A. Rodríguez-Bernal and E. S. Van Vleck, Complex oscillations in a closed thermosyphon, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 41-56.
doi: 10.1142/S0218127498000048. |
[25] |
A. Rodríguez-Bernal and E. S. Van Vleck, Diffusion induced chaos in a closed loop thermosyphon, SIAM J. Appl. Math., 58 (1998), 1072-1093.
doi: 10.1137/S0036139996304184. |
[26] |
A. M. Stuart, Pertubration theory of infinite-dimensiional dyanamical systems, in Theory and Numerics of Ordinary and Partial differential Equations, M.Ainsworth, J. Levesley, W.A.Light and M. Marletta, eds., (Oxford University Press, Oxford, UK, 1994). |
[27] |
G. B. Thurston and N. M. Henderson, Effects of flow geometry on blood viscoelasticity, Biorheology, 43 (2006), 729-746. |
[28] |
J. J. L. Velázquez, On the dynamics of a closed thermosyphon, SIAM J.Appl. Math., 54 (1994), 1561-1593.
doi: 10.1137/S0036139993246787. |
[29] |
P. Welander, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29 (1967), 17-30. |
[30] |
A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285-317.
doi: 10.1016/0167-2789(85)90011-9. |
[31] |
S. Wolfram, The mathematica book, Cambridge University Press, 1999. |
[32] |
J. Yasappan, A. Jiménez-Casas and M. Castro, Asymptotic behavior of a viscoelastic fluid in a closed loop thermosyphon: Physical derivation, asymptotic analysis and numerical experiments, Abstract and Applied Analysis, 2013 Art. ID 748683, (2013), 20pp. |
show all references
References:
[1] |
H. A. Barnes, A Handbook of Elementary Rheology, Institute of Non-Newtonian Fluid Mechanics, Univesity of Wales, 2000. |
[2] |
A. M. Bloch and E. S. Titi, On the dynamics of rotating elastic beams, in New Trends in System Theory, Progr. Systems Control Theory, 7 (1991), 128-135.
doi: 10.1007/978-1-4612-0439-8_15. |
[3] |
M. E. Bravo-Gutiérrez, C. Mario and A. P. Hernández-Machado, Controlling viscoelastic flow in microchannels with slip, Langmuir, ACS Publications, 27 (2011), 2075-2079. |
[4] |
F. Debbasch and J. P. Rivet, The Ludwig-Soret effect and stochastic processes, J. Chem.Thermodynamics, 43 (2011), 300-306.
doi: 10.1016/j.jct.2010.09.010. |
[5] |
R. Greif, Y. Zvirin and A. Mertol, The transient and stability behavior of a natural convection loop, J. Heat Transfer, 101 (1979), 684-688.
doi: 10.1115/1.3451057. |
[6] |
W. N. Findley et al., Creep and Relaxation of Nonlinear Viscoelastic Materials, (Dover Publications, New York, 1989). |
[7] |
C. Foias, G. R. Sell and R. Temam, Inertial manifolds for nonlinear evolution equations, J. Diff. Equ., 73 (1988), 309-353.
doi: 10.1016/0022-0396(88)90110-6. |
[8] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, AMS, Providence, RI, 1988. |
[9] |
J. E. Hart, A model of flow in a closed-loop thermosyphon including the soret effect, J. of Heat Transfer, 107 (1985), 840-849.
doi: 10.1115/1.3247512. |
[10] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lectures Notes in Mathematics 840, Springer-Verlag, Berlin, New York, 1981. |
[11] |
M. A. Herrero and J. J. L. Velazquez, Stability analysis of a closed thermosyphon, European J. Appl. Math., 1 (1990), 1-24.
doi: 10.1017/S0956792500000036. |
[12] |
St. Hollinger and M. Lucke, Influence of the Soret effect on convection of binary fluids, Phys. Rev. E, 57 (1998), 4238-4249. |
[13] |
F. P. Incropera, T. L. Bergman, A. S. Lavine and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley, 2011. |
[14] |
A. Jiménez-Casas, A coupled ODE/PDE system governing a thermosyphon model, Nonlin. Analy., 47 (2001), 687-692.
doi: 10.1016/S0362-546X(01)00212-7. |
[15] |
A. Jiménez-Casas and A. M-L. Ovejero, Numerical analysis of a closed-loop thermosyphon including the Soret effect, Appl. Math. Comput., 124 (2001), 289-318.
doi: 10.1016/S0096-3003(00)00075-8. |
[16] |
A. Jiménez-Casas and A. Rodríguez-Bernal, Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect, Math. Meth. in the Appl. Sci., 22 (1999), 117-137.
doi: 10.1002/(SICI)1099-1476(19990125)22:2<117::AID-MMA25>3.0.CO;2-0. |
[17] |
A. Jiménez Casas and A. Rodríguez-Bernal, Dinámica no Lineal: Modelos de Campo de Fase y un Termosifón Cerrado, Editorial Académica Española, (Lap Lambert Academic Publishing GmbH and Co. KG, Germany 2012). |
[18] |
J. B. Keller, Periodic oscillations in a model of thermal convection, J. Fluid Mech., 26 (1966), 599-606.
doi: 10.1017/S0022112066001423. |
[19] |
P. A. Lakshminarayana, P. V. S. N. Murthy and R. S. R. Gorla, Soret-driven thermosolutal convection induced by inclined thermal and solutal gradients in a shallow horizontal layer of a porous medium, J. Fluid Mech., 612 (2008), 1-19.
doi: 10.1017/S0022112008002619. |
[20] |
A. Liñan, Analytical description of chaotic oscillations in a toroidal thermosyphon, in Fluid Physics, Lecture Notes of Summer Schools, (M.G. Velarde, C.I. Christov, eds.,) World Scientific, River Edge, NJ, (1994), 507-523. |
[21] |
F. Morrison, Understanding Rheology, (Oxford University Press, USA, 2001). |
[22] |
A. Rodríguez-Bernal, Attractor ansyphon, Journal of Mathematical Analysis and Applications, 193 (1995), 942-965.
doi: 10.1006/jmaa.1995.1276. |
[23] |
A. Rodríguez-Bernal, Inertial manifolds for dissipative semiflows in Banach spaces, Appl. Anal., 37 (1990), 95-141.
doi: 10.1080/00036819008839943. |
[24] |
A. Rodríguez-Bernal and E. S. Van Vleck, Complex oscillations in a closed thermosyphon, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 8 (1998), 41-56.
doi: 10.1142/S0218127498000048. |
[25] |
A. Rodríguez-Bernal and E. S. Van Vleck, Diffusion induced chaos in a closed loop thermosyphon, SIAM J. Appl. Math., 58 (1998), 1072-1093.
doi: 10.1137/S0036139996304184. |
[26] |
A. M. Stuart, Pertubration theory of infinite-dimensiional dyanamical systems, in Theory and Numerics of Ordinary and Partial differential Equations, M.Ainsworth, J. Levesley, W.A.Light and M. Marletta, eds., (Oxford University Press, Oxford, UK, 1994). |
[27] |
G. B. Thurston and N. M. Henderson, Effects of flow geometry on blood viscoelasticity, Biorheology, 43 (2006), 729-746. |
[28] |
J. J. L. Velázquez, On the dynamics of a closed thermosyphon, SIAM J.Appl. Math., 54 (1994), 1561-1593.
doi: 10.1137/S0036139993246787. |
[29] |
P. Welander, On the oscillatory instability of a differentially heated fluid loop, J. Fluid Mech., 29 (1967), 17-30. |
[30] |
A. Wolf, J. B. Swift, H. L. Swinney and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D, 16 (1985), 285-317.
doi: 10.1016/0167-2789(85)90011-9. |
[31] |
S. Wolfram, The mathematica book, Cambridge University Press, 1999. |
[32] |
J. Yasappan, A. Jiménez-Casas and M. Castro, Asymptotic behavior of a viscoelastic fluid in a closed loop thermosyphon: Physical derivation, asymptotic analysis and numerical experiments, Abstract and Applied Analysis, 2013 Art. ID 748683, (2013), 20pp. |
[1] |
A. Jiménez-Casas, Mario Castro, Justine Yassapan. Finite-dimensional behavior in a thermosyphon with a viscoelastic fluid. Conference Publications, 2013, 2013 (special) : 375-384. doi: 10.3934/proc.2013.2013.375 |
[2] |
Zhenhua Guo, Wenchao Dong, Jinjing Liu. Large-time behavior of solution to an inflow problem on the half space for a class of compressible non-Newtonian fluids. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2133-2161. doi: 10.3934/cpaa.2019096 |
[3] |
Guowei Liu, Rui Xue. Pullback dynamic behavior for a non-autonomous incompressible non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2193-2216. doi: 10.3934/dcdsb.2018231 |
[4] |
Lars Diening, Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 255-268. doi: 10.3934/dcdss.2010.3.255 |
[5] |
Jan Sokołowski, Jan Stebel. Shape optimization for non-Newtonian fluids in time-dependent domains. Evolution Equations and Control Theory, 2014, 3 (2) : 331-348. doi: 10.3934/eect.2014.3.331 |
[6] |
Aneta Wróblewska-Kamińska. Unsteady flows of non-Newtonian fluids in generalized Orlicz spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2565-2592. doi: 10.3934/dcds.2013.33.2565 |
[7] |
Pitágoras Pinheiro de Carvalho, Juan Límaco, Denilson Menezes, Yuri Thamsten. Local null controllability of a class of non-Newtonian incompressible viscous fluids. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021043 |
[8] |
Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212 |
[9] |
M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503 |
[10] |
Linfang Liu, Tomás Caraballo, Xianlong Fu. Exponential stability of an incompressible non-Newtonian fluid with delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4285-4303. doi: 10.3934/dcdsb.2018138 |
[11] |
Muhammad Mansha Ghalib, Azhar Ali Zafar, Zakia Hammouch, Muhammad Bilal Riaz, Khurram Shabbir. Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 683-693. doi: 10.3934/dcdss.2020037 |
[12] |
Xin Liu, Yongjin Lu, Xin-Guang Yang. Stability and dynamics for a nonlinear one-dimensional full compressible non-Newtonian fluids. Evolution Equations and Control Theory, 2021, 10 (2) : 365-384. doi: 10.3934/eect.2020071 |
[13] |
Jong Yeoul Park, Jae Ug Jeong. Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2687-2702. doi: 10.3934/dcdsb.2016068 |
[14] |
Kun Wang, Yangping Lin, Yinnian He. Asymptotic analysis of the equations of motion for viscoelastic oldroyd fluid. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 657-677. doi: 10.3934/dcds.2012.32.657 |
[15] |
Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483 |
[16] |
Aneta Wróblewska-Kamińska. Local pressure methods in Orlicz spaces for the motion of rigid bodies in a non-Newtonian fluid with general growth conditions. Discrete and Continuous Dynamical Systems - S, 2013, 6 (5) : 1417-1425. doi: 10.3934/dcdss.2013.6.1417 |
[17] |
Li Fang, Zhenhua Guo. Zero dissipation limit to rarefaction wave with vacuum for a one-dimensional compressible non-Newtonian fluid. Communications on Pure and Applied Analysis, 2017, 16 (1) : 209-242. doi: 10.3934/cpaa.2017010 |
[18] |
Kun Wang, Yinnian He, Yanping Lin. Long time numerical stability and asymptotic analysis for the viscoelastic Oldroyd flows. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1551-1573. doi: 10.3934/dcdsb.2012.17.1551 |
[19] |
Fei Jiang. Stabilizing effect of elasticity on the motion of viscoelastic/elastic fluids. Electronic Research Archive, 2021, 29 (6) : 4051-4074. doi: 10.3934/era.2021071 |
[20] |
Yukun Song, Yang Chen, Jun Yan, Shuai Chen. The existence of solutions for a shear thinning compressible non-Newtonian models. Electronic Research Archive, 2020, 28 (1) : 47-66. doi: 10.3934/era.2020004 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]