-
Previous Article
Brief survey on the topological entropy
- DCDS-B Home
- This Issue
-
Next Article
On entropy, entropy-like quantities, and applications
Dimension theory of flows: A survey
1. | Departamento de Matemática, Instituto Superior Técnico, UTL, 1049-001 Lisboa |
References:
[1] |
L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics, 272, Birkhäuser, 2008.
doi: 10.1007/978-3-7643-8882-9. |
[2] |
L. Barreira, Dimension Theory of Hyperbolic Flows, Springer Monographs in Mathematics, Springer, 2013.
doi: 10.1007/978-3-319-00548-5. |
[3] |
L. Barreira and P. Doutor, Birkhoff averages for hyperbolic flows: Variational principles and applications, J. Statist. Phys., 115 (2004), 1567-1603.
doi: 10.1023/B:JOSS.0000028069.64945.65. |
[4] |
L. Barreira and P. Doutor, Dimension spectra of hyperbolic flows, J. Stat. Phys., 136 (2009), 505-525.
doi: 10.1007/s10955-009-9790-5. |
[5] |
L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows, Comm. Math. Phys., 214 (2000), 339-371.
doi: 10.1007/s002200000268. |
[6] |
L. Barreira and B. Saussol, Variational principles for hyperbolic flows, in Differential Equations and Dynamical Systems (Lisbon, 2000), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, 2002, 43-63. |
[7] |
L. Barreira and C. Wolf, Dimension and ergodic decompositions for hyperbolic flows, Discrete Contin. Dyn. Syst., 17 (2007), 201-212.
doi: 10.3934/dcds.2007.17.201. |
[8] |
R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460.
doi: 10.2307/2373793. |
[9] |
R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11-25.
doi: 10.1007/BF02684767. |
[10] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7. |
[11] |
M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro, 1981) (ed. J. Palis), Lect. Notes in Math., 1007, Springer, 1983, 30-38.
doi: 10.1007/BFb0061408. |
[12] |
K. Burns and K. Gelfert, Lyapunov spectrum for geodesic flows of rank 1 surfaces, Discrete Contin. Dyn. Syst., 34 (2014), 1841-1872.
doi: 10.3934/dcds.2014.34.1841. |
[13] |
P. Collet, J. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems, J. Stat. Phys., 47 (1987), 609-644.
doi: 10.1007/BF01206149. |
[14] |
K. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554.
doi: 10.1090/S0002-9939-1989-0969315-8. |
[15] |
T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A (3), 34 (1986), p1601.
doi: 10.1103/PhysRevA.33.1141. |
[16] |
B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems, 14 (1994), 645-666.
doi: 10.1017/S0143385700008105. |
[17] |
A. Lopes, The dimension spectrum of the maximal measure, SIAM J. Math. Anal., 20 (1989), 1243-1254.
doi: 10.1137/0520081. |
[18] |
H. McCluskey and A. Manning, Hausdorff dimension for horseshoes, Ergodic Theory Dynam. Systems, 3 (1983), 251-260.
doi: 10.1017/S0143385700001966. |
[19] |
J. Palis and M. Viana, On the continuity of Hausdorff dimension and limit capacity for horseshoes, in Dynamical Systems (Valparaiso, 1986) (eds. R. Bamón, R. Labarca and J. Palis), Lect. Notes in Math., 1331, Springer, 1988, 150-160.
doi: 10.1007/BFb0083071. |
[20] |
Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago University Press, 1997.
doi: 10.7208/chicago/9780226662237.001.0001. |
[21] |
Ya. Pesin and V. Sadovskaya, Multifractal analysis of conformal axiom A flows, Comm. Math. Phys., 216 (2001), 277-312.
doi: 10.1007/s002200000329. |
[22] |
Ya. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Markov Moran geometric constructions, J. Statist. Phys., 86 (1997), 233-275.
doi: 10.1007/BF02180206. |
[23] |
Ya. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos, 7 (1997), 89-106.
doi: 10.1063/1.166242. |
[24] |
M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets, J. Statist. Phys., 77 (1994), 841-866.
doi: 10.1007/BF02179463. |
[25] |
F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989), 155-186. |
[26] |
D. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters, Ergodic Theory Dynam. Systems, 9 (1989), 527-541.
doi: 10.1017/S0143385700005162. |
[27] |
M. Ratner, Markov partitions for Anosov flows on $n$-dimensional manifolds, Israel J. Math., 15 (1973), 92-114.
doi: 10.1007/BF02771776. |
[28] |
D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems, 2 (1982), 99-107.
doi: 10.1017/S0143385700009603. |
[29] |
F. Takens, Limit capacity and Hausdorff dimension of dynamically defined Cantor sets, in Dynamical Systems (Valparaiso, 1986) (eds. R. Bamón, R. Labarca and J. Palis), Lect. Notes in Math., 1331, Springer, 1988, 196-212.
doi: 10.1007/BFb0083074. |
[30] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer, 1982. |
[31] |
L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, 2 (1982), 109-124.
doi: 10.1017/S0143385700009615. |
show all references
References:
[1] |
L. Barreira, Dimension and Recurrence in Hyperbolic Dynamics, Progress in Mathematics, 272, Birkhäuser, 2008.
doi: 10.1007/978-3-7643-8882-9. |
[2] |
L. Barreira, Dimension Theory of Hyperbolic Flows, Springer Monographs in Mathematics, Springer, 2013.
doi: 10.1007/978-3-319-00548-5. |
[3] |
L. Barreira and P. Doutor, Birkhoff averages for hyperbolic flows: Variational principles and applications, J. Statist. Phys., 115 (2004), 1567-1603.
doi: 10.1023/B:JOSS.0000028069.64945.65. |
[4] |
L. Barreira and P. Doutor, Dimension spectra of hyperbolic flows, J. Stat. Phys., 136 (2009), 505-525.
doi: 10.1007/s10955-009-9790-5. |
[5] |
L. Barreira and B. Saussol, Multifractal analysis of hyperbolic flows, Comm. Math. Phys., 214 (2000), 339-371.
doi: 10.1007/s002200000268. |
[6] |
L. Barreira and B. Saussol, Variational principles for hyperbolic flows, in Differential Equations and Dynamical Systems (Lisbon, 2000), Fields Inst. Commun., 31, Amer. Math. Soc., Providence, RI, 2002, 43-63. |
[7] |
L. Barreira and C. Wolf, Dimension and ergodic decompositions for hyperbolic flows, Discrete Contin. Dyn. Syst., 17 (2007), 201-212.
doi: 10.3934/dcds.2007.17.201. |
[8] |
R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math., 95 (1973), 429-460.
doi: 10.2307/2373793. |
[9] |
R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes Études Sci. Publ. Math., 50 (1979), 11-25.
doi: 10.1007/BF02684767. |
[10] |
R. Bowen and P. Walters, Expansive one-parameter flows, J. Differential Equations, 12 (1972), 180-193.
doi: 10.1016/0022-0396(72)90013-7. |
[11] |
M. Brin and A. Katok, On local entropy, in Geometric Dynamics (Rio de Janeiro, 1981) (ed. J. Palis), Lect. Notes in Math., 1007, Springer, 1983, 30-38.
doi: 10.1007/BFb0061408. |
[12] |
K. Burns and K. Gelfert, Lyapunov spectrum for geodesic flows of rank 1 surfaces, Discrete Contin. Dyn. Syst., 34 (2014), 1841-1872.
doi: 10.3934/dcds.2014.34.1841. |
[13] |
P. Collet, J. Lebowitz and A. Porzio, The dimension spectrum of some dynamical systems, J. Stat. Phys., 47 (1987), 609-644.
doi: 10.1007/BF01206149. |
[14] |
K. Falconer, Dimensions and measures of quasi self-similar sets, Proc. Amer. Math. Soc., 106 (1989), 543-554.
doi: 10.1090/S0002-9939-1989-0969315-8. |
[15] |
T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Phys. Rev. A (3), 34 (1986), p1601.
doi: 10.1103/PhysRevA.33.1141. |
[16] |
B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynam. Systems, 14 (1994), 645-666.
doi: 10.1017/S0143385700008105. |
[17] |
A. Lopes, The dimension spectrum of the maximal measure, SIAM J. Math. Anal., 20 (1989), 1243-1254.
doi: 10.1137/0520081. |
[18] |
H. McCluskey and A. Manning, Hausdorff dimension for horseshoes, Ergodic Theory Dynam. Systems, 3 (1983), 251-260.
doi: 10.1017/S0143385700001966. |
[19] |
J. Palis and M. Viana, On the continuity of Hausdorff dimension and limit capacity for horseshoes, in Dynamical Systems (Valparaiso, 1986) (eds. R. Bamón, R. Labarca and J. Palis), Lect. Notes in Math., 1331, Springer, 1988, 150-160.
doi: 10.1007/BFb0083071. |
[20] |
Ya. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, Chicago Lectures in Mathematics, Chicago University Press, 1997.
doi: 10.7208/chicago/9780226662237.001.0001. |
[21] |
Ya. Pesin and V. Sadovskaya, Multifractal analysis of conformal axiom A flows, Comm. Math. Phys., 216 (2001), 277-312.
doi: 10.1007/s002200000329. |
[22] |
Ya. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Markov Moran geometric constructions, J. Statist. Phys., 86 (1997), 233-275.
doi: 10.1007/BF02180206. |
[23] |
Ya. Pesin and H. Weiss, The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples, Chaos, 7 (1997), 89-106.
doi: 10.1063/1.166242. |
[24] |
M. Pollicott and H. Weiss, The dimensions of some self-affine limit sets in the plane and hyperbolic sets, J. Statist. Phys., 77 (1994), 841-866.
doi: 10.1007/BF02179463. |
[25] |
F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math., 93 (1989), 155-186. |
[26] |
D. Rand, The singularity spectrum $f(\alpha)$ for cookie-cutters, Ergodic Theory Dynam. Systems, 9 (1989), 527-541.
doi: 10.1017/S0143385700005162. |
[27] |
M. Ratner, Markov partitions for Anosov flows on $n$-dimensional manifolds, Israel J. Math., 15 (1973), 92-114.
doi: 10.1007/BF02771776. |
[28] |
D. Ruelle, Repellers for real analytic maps, Ergodic Theory Dynam. Systems, 2 (1982), 99-107.
doi: 10.1017/S0143385700009603. |
[29] |
F. Takens, Limit capacity and Hausdorff dimension of dynamically defined Cantor sets, in Dynamical Systems (Valparaiso, 1986) (eds. R. Bamón, R. Labarca and J. Palis), Lect. Notes in Math., 1331, Springer, 1988, 196-212.
doi: 10.1007/BFb0083074. |
[30] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer, 1982. |
[31] |
L.-S. Young, Dimension, entropy and Lyapunov exponents, Ergodic Theory Dynam. Systems, 2 (1982), 109-124.
doi: 10.1017/S0143385700009615. |
[1] |
Luis Barreira, Christian Wolf. Dimension and ergodic decompositions for hyperbolic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 201-212. doi: 10.3934/dcds.2007.17.201 |
[2] |
Vaughn Climenhaga. A note on two approaches to the thermodynamic formalism. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 995-1005. doi: 10.3934/dcds.2010.27.995 |
[3] |
Imen Bhouri, Houssem Tlili. On the multifractal formalism for Bernoulli products of invertible matrices. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1129-1145. doi: 10.3934/dcds.2009.24.1129 |
[4] |
Michael Jakobson, Lucia D. Simonelli. Countable Markov partitions suitable for thermodynamic formalism. Journal of Modern Dynamics, 2018, 13: 199-219. doi: 10.3934/jmd.2018018 |
[5] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 131-164. doi: 10.3934/dcds.2008.22.131 |
[6] |
Yongluo Cao, De-Jun Feng, Wen Huang. The thermodynamic formalism for sub-additive potentials. Discrete and Continuous Dynamical Systems, 2008, 20 (3) : 639-657. doi: 10.3934/dcds.2008.20.639 |
[7] |
Anna Mummert. The thermodynamic formalism for almost-additive sequences. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 435-454. doi: 10.3934/dcds.2006.16.435 |
[8] |
Luis Barreira. Nonadditive thermodynamic formalism: Equilibrium and Gibbs measures. Discrete and Continuous Dynamical Systems, 2006, 16 (2) : 279-305. doi: 10.3934/dcds.2006.16.279 |
[9] |
Manfred Denker, Yuri Kifer, Manuel Stadlbauer. Corrigendum to: Thermodynamic formalism for random countable Markov shifts. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 593-594. doi: 10.3934/dcds.2015.35.593 |
[10] |
Yakov Pesin. On the work of Sarig on countable Markov chains and thermodynamic formalism. Journal of Modern Dynamics, 2014, 8 (1) : 1-14. doi: 10.3934/jmd.2014.8.1 |
[11] |
Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 |
[12] |
Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete and Continuous Dynamical Systems, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 |
[13] |
Guohua Zhang. Variational principles of pressure. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1409-1435. doi: 10.3934/dcds.2009.24.1409 |
[14] |
Vaughn Climenhaga. Multifractal formalism derived from thermodynamics for general dynamical systems. Electronic Research Announcements, 2010, 17: 1-11. doi: 10.3934/era.2010.17.1 |
[15] |
Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 |
[16] |
Yong Fang. Thermodynamic invariants of Anosov flows and rigidity. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1185-1204. doi: 10.3934/dcds.2009.24.1185 |
[17] |
L. Cioletti, E. Silva, M. Stadlbauer. Thermodynamic formalism for topological Markov chains on standard Borel spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6277-6298. doi: 10.3934/dcds.2019274 |
[18] |
Gerhard Keller. Stability index, uncertainty exponent, and thermodynamic formalism for intermingled basins of chaotic attractors. Discrete and Continuous Dynamical Systems - S, 2017, 10 (2) : 313-334. doi: 10.3934/dcdss.2017015 |
[19] |
Renaud Leplaideur. From local to global equilibrium states: Thermodynamic formalism via an inducing scheme. Electronic Research Announcements, 2014, 21: 72-79. doi: 10.3934/era.2014.21.72 |
[20] |
Eugen Mihailescu. Applications of thermodynamic formalism in complex dynamics on $\mathbb{P}^2$. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 821-836. doi: 10.3934/dcds.2001.7.821 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]