-
Previous Article
Semiconjugacy to a map of a constant slope
- DCDS-B Home
- This Issue
-
Next Article
Entropy and actions of sofic groups
Directional complexity and entropy for lift mappings
1. | Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P, Mexico |
2. | Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS et Université Paris 7-Denis Diderot, 10, rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13, France |
3. | Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potos, Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P, Mexico |
References:
[1] |
in Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 9-30. |
[2] |
AMS Studies in Advance Mathematics, 28, American Mathematical Society, Providence, RI, 2003. |
[3] |
Nonlinearity, 17 (2004), 105-116.
doi: 10.1088/0951-7715/17/1/007. |
[4] |
Chaos, 13 (2003), 519-532.
doi: 10.1063/1.1566171. |
[5] |
Phys. Rep., 75 (1981), 287-325.
doi: 10.1016/0370-1573(81)90186-1. |
[6] |
Second Edition, {World Scientific}, 2000.
doi: 10.1142/4205. |
[7] |
Erg. Th. Dyn. Syst., 4 (1984), 493-498.
doi: 10.1017/S0143385700002595. |
[8] |
Int. Journal of bifurcation and Chaos, 18 (2008), 161-168.
doi: 10.1142/S0218127408020203. |
[9] |
Nonlinearity, 16 (2003), 1214-1238.
doi: 10.1088/0951-7715/16/4/302. |
[10] |
AMS Chelsea publishing, 1959. |
[11] |
Trans. of AMS, 351 (1999), 2927-2948.
doi: 10.1090/S0002-9947-99-02344-2. |
[12] |
Ergod. Th. & Dynam. Sys, 29 (2009), 1163-1183.
doi: 10.1017/S0143385708080620. |
[13] |
Math. Proc. Camb. Phil. Soc., 89 (1981), 107-111.
doi: 10.1017/S0305004100057984. |
[14] |
Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[15] |
Usp. Mat. Nauk, 14 (1959), 3-86. |
[16] |
PhD Thesis, SUNY et Stony Brook, 1995. |
[17] |
in Disordered Systems and Biological Organization (Les Houches, 1985), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 20, Springer, Berlin, 1986, 113-115. |
[18] |
Complex Syst., 2 (1988), 357-385. |
[19] |
Inst. Hantes Études Sci Publ. Math., 57 (1983), 5-71. |
[20] |
J. Combin. Theory Ser. A, 97 (2002), 129-161.
doi: 10.1006/jcta.2001.3201. |
[21] |
Combin. Probab. Comput., 13 (2004), 735-761.
doi: 10.1017/S0963548304006248. |
[22] |
SIAM Rev., 50 (2008), 199-272.
doi: 10.1137/050643866. |
[23] |
Fundamenta Mathematicae, 146 (1995), 189-201. |
[24] |
, SAGE is an open source mathematics software,, See , (). Google Scholar |
show all references
References:
[1] |
in Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 9-30. |
[2] |
AMS Studies in Advance Mathematics, 28, American Mathematical Society, Providence, RI, 2003. |
[3] |
Nonlinearity, 17 (2004), 105-116.
doi: 10.1088/0951-7715/17/1/007. |
[4] |
Chaos, 13 (2003), 519-532.
doi: 10.1063/1.1566171. |
[5] |
Phys. Rep., 75 (1981), 287-325.
doi: 10.1016/0370-1573(81)90186-1. |
[6] |
Second Edition, {World Scientific}, 2000.
doi: 10.1142/4205. |
[7] |
Erg. Th. Dyn. Syst., 4 (1984), 493-498.
doi: 10.1017/S0143385700002595. |
[8] |
Int. Journal of bifurcation and Chaos, 18 (2008), 161-168.
doi: 10.1142/S0218127408020203. |
[9] |
Nonlinearity, 16 (2003), 1214-1238.
doi: 10.1088/0951-7715/16/4/302. |
[10] |
AMS Chelsea publishing, 1959. |
[11] |
Trans. of AMS, 351 (1999), 2927-2948.
doi: 10.1090/S0002-9947-99-02344-2. |
[12] |
Ergod. Th. & Dynam. Sys, 29 (2009), 1163-1183.
doi: 10.1017/S0143385708080620. |
[13] |
Math. Proc. Camb. Phil. Soc., 89 (1981), 107-111.
doi: 10.1017/S0305004100057984. |
[14] |
Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187. |
[15] |
Usp. Mat. Nauk, 14 (1959), 3-86. |
[16] |
PhD Thesis, SUNY et Stony Brook, 1995. |
[17] |
in Disordered Systems and Biological Organization (Les Houches, 1985), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 20, Springer, Berlin, 1986, 113-115. |
[18] |
Complex Syst., 2 (1988), 357-385. |
[19] |
Inst. Hantes Études Sci Publ. Math., 57 (1983), 5-71. |
[20] |
J. Combin. Theory Ser. A, 97 (2002), 129-161.
doi: 10.1006/jcta.2001.3201. |
[21] |
Combin. Probab. Comput., 13 (2004), 735-761.
doi: 10.1017/S0963548304006248. |
[22] |
SIAM Rev., 50 (2008), 199-272.
doi: 10.1137/050643866. |
[23] |
Fundamenta Mathematicae, 146 (1995), 189-201. |
[24] |
, SAGE is an open source mathematics software,, See , (). Google Scholar |
[1] |
Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021017 |
[2] |
Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069 |
[3] |
Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034 |
[4] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[5] |
Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022 |
[6] |
Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199 |
[7] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[8] |
Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017 |
[9] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002 |
[10] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[11] |
Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021081 |
[12] |
Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203 |
[13] |
Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935 |
[14] |
Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021037 |
[15] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[16] |
Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234 |
[17] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[18] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[19] |
Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027 |
[20] |
Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]