December  2015, 20(10): 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

Directional complexity and entropy for lift mappings

1. 

Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P, Mexico

2. 

Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS et Université Paris 7-Denis Diderot, 10, rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13, France

3. 

Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potos, Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P, Mexico

Received  December 2014 Revised  March 2015 Published  September 2015

We introduce and study the notion of a directional complexity and entropy for maps of degree $1$ on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directional entropy, to find the maximal directional entropy, and to show that it equals the topological entropy of the map.
Citation: Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385
References:
[1]

V. Afraimovich, M. Courbage, B. Fernandez and A. Morante, Directional entropy in lattice dynamical systems,, in Progress in nonlinear science, (2001), 9.   Google Scholar

[2]

V. Afraimovich and S. B. Hsu, Lectures on Chaotic Dynamical Systems,, AMS Studies in Advance Mathematics, (2003).   Google Scholar

[3]

V. Afraimovich, A. Morante and E. Ugalde, On the density of directional entropy in lattice dynamical systems,, Nonlinearity, 17 (2004), 105.  doi: 10.1088/0951-7715/17/1/007.  Google Scholar

[4]

V. Afraimovich and G. M. Zaslavsky, Space-time complexity in Hamiltonian dynamics,, Chaos, 13 (2003), 519.  doi: 10.1063/1.1566171.  Google Scholar

[5]

V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems,, Phys. Rep., 75 (1981), 287.  doi: 10.1016/0370-1573(81)90186-1.  Google Scholar

[6]

L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, Second Edition, (2000).  doi: 10.1142/4205.  Google Scholar

[7]

R. Bamon, I. P. Malta, M. J. Pacifico and F. Takens, Rotation intervals of endomorphisms of the circle,, Erg. Th. Dyn. Syst., 4 (1984), 493.  doi: 10.1017/S0143385700002595.  Google Scholar

[8]

M. Courbage and B. Kaminski, Density of measure-theoretical directional entropy for lattice dynamical systems,, Int. Journal of bifurcation and Chaos, 18 (2008), 161.  doi: 10.1142/S0218127408020203.  Google Scholar

[9]

S. Galatolo, Complexity, initial condition sensitivity, dimensions and weak chaos in dynamical systems,, Nonlinearity, 16 (2003), 1214.  doi: 10.1088/0951-7715/16/4/302.  Google Scholar

[10]

F. Gantmacher, Theory of Matrices,, AMS Chelsea publishing, (1959).   Google Scholar

[11]

W. Geller and M. Misiurewicz, Rotation and entropy,, Trans. of AMS, 351 (1999), 2927.  doi: 10.1090/S0002-9947-99-02344-2.  Google Scholar

[12]

E. Gutkin and M. Rams, Growth rates for geometric complexities and counting functions in polygonal billiards,, Ergod. Th. & Dynam. Sys, 29 (2009), 1163.  doi: 10.1017/S0143385708080620.  Google Scholar

[13]

R. Ito, Rotation sets are closed,, Math. Proc. Camb. Phil. Soc., 89 (1981), 107.  doi: 10.1017/S0305004100057984.  Google Scholar

[14]

A. Katok and B. Hasselblatt, Introduction to the Morden Theory of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[15]

A. N. Kolmogorov and V. M. Tikhomirov, $\epsilon$-entropy and $\epsilon$-capacity of sets in functional spaces,, Usp. Mat. Nauk, 14 (1959), 3.   Google Scholar

[16]

J. Kwapisz, Rotation Sets and Entropy,, PhD Thesis, (1995).   Google Scholar

[17]

J. Milnor, Directional entropy of cellular automaton maps,, in Disordered Systems and Biological Organization (Les Houches, (1985), 113.   Google Scholar

[18]

J. Milnor, On the entropy geometry of cellular automata,, Complex Syst., 2 (1988), 357.   Google Scholar

[19]

S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms,, Inst. Hantes Études Sci Publ. Math., 57 (1983), 5.   Google Scholar

[20]

R. Pemantle and M. Wilson, Asymptotics of multivariate sequences, I. Smooth points of the singular variety,, J. Combin. Theory Ser. A, 97 (2002), 129.  doi: 10.1006/jcta.2001.3201.  Google Scholar

[21]

R. Pemantle and M. Wilson, Asymptotics of multivariate sequences, II. Multiple points of the singular variety,, Combin. Probab. Comput., 13 (2004), 735.  doi: 10.1017/S0963548304006248.  Google Scholar

[22]

R. Pemantle and M. Wilson, Twenty combinatorial esxamples of asymptotics derived from multivariate generating functions,, SIAM Rev., 50 (2008), 199.  doi: 10.1137/050643866.  Google Scholar

[23]

K. Ziemian, Rotation sets for subshifts of finite type,, Fundamenta Mathematicae, 146 (1995), 189.   Google Scholar

[24]

, SAGE is an open source mathematics software,, See , ().   Google Scholar

show all references

References:
[1]

V. Afraimovich, M. Courbage, B. Fernandez and A. Morante, Directional entropy in lattice dynamical systems,, in Progress in nonlinear science, (2001), 9.   Google Scholar

[2]

V. Afraimovich and S. B. Hsu, Lectures on Chaotic Dynamical Systems,, AMS Studies in Advance Mathematics, (2003).   Google Scholar

[3]

V. Afraimovich, A. Morante and E. Ugalde, On the density of directional entropy in lattice dynamical systems,, Nonlinearity, 17 (2004), 105.  doi: 10.1088/0951-7715/17/1/007.  Google Scholar

[4]

V. Afraimovich and G. M. Zaslavsky, Space-time complexity in Hamiltonian dynamics,, Chaos, 13 (2003), 519.  doi: 10.1063/1.1566171.  Google Scholar

[5]

V. M. Alekseev and M. V. Yakobson, Symbolic dynamics and hyperbolic dynamic systems,, Phys. Rep., 75 (1981), 287.  doi: 10.1016/0370-1573(81)90186-1.  Google Scholar

[6]

L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, Second Edition, (2000).  doi: 10.1142/4205.  Google Scholar

[7]

R. Bamon, I. P. Malta, M. J. Pacifico and F. Takens, Rotation intervals of endomorphisms of the circle,, Erg. Th. Dyn. Syst., 4 (1984), 493.  doi: 10.1017/S0143385700002595.  Google Scholar

[8]

M. Courbage and B. Kaminski, Density of measure-theoretical directional entropy for lattice dynamical systems,, Int. Journal of bifurcation and Chaos, 18 (2008), 161.  doi: 10.1142/S0218127408020203.  Google Scholar

[9]

S. Galatolo, Complexity, initial condition sensitivity, dimensions and weak chaos in dynamical systems,, Nonlinearity, 16 (2003), 1214.  doi: 10.1088/0951-7715/16/4/302.  Google Scholar

[10]

F. Gantmacher, Theory of Matrices,, AMS Chelsea publishing, (1959).   Google Scholar

[11]

W. Geller and M. Misiurewicz, Rotation and entropy,, Trans. of AMS, 351 (1999), 2927.  doi: 10.1090/S0002-9947-99-02344-2.  Google Scholar

[12]

E. Gutkin and M. Rams, Growth rates for geometric complexities and counting functions in polygonal billiards,, Ergod. Th. & Dynam. Sys, 29 (2009), 1163.  doi: 10.1017/S0143385708080620.  Google Scholar

[13]

R. Ito, Rotation sets are closed,, Math. Proc. Camb. Phil. Soc., 89 (1981), 107.  doi: 10.1017/S0305004100057984.  Google Scholar

[14]

A. Katok and B. Hasselblatt, Introduction to the Morden Theory of Dynamical Systems,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[15]

A. N. Kolmogorov and V. M. Tikhomirov, $\epsilon$-entropy and $\epsilon$-capacity of sets in functional spaces,, Usp. Mat. Nauk, 14 (1959), 3.   Google Scholar

[16]

J. Kwapisz, Rotation Sets and Entropy,, PhD Thesis, (1995).   Google Scholar

[17]

J. Milnor, Directional entropy of cellular automaton maps,, in Disordered Systems and Biological Organization (Les Houches, (1985), 113.   Google Scholar

[18]

J. Milnor, On the entropy geometry of cellular automata,, Complex Syst., 2 (1988), 357.   Google Scholar

[19]

S. Newhouse, J. Palis and F. Takens, Bifurcations and stability of families of diffeomorphisms,, Inst. Hantes Études Sci Publ. Math., 57 (1983), 5.   Google Scholar

[20]

R. Pemantle and M. Wilson, Asymptotics of multivariate sequences, I. Smooth points of the singular variety,, J. Combin. Theory Ser. A, 97 (2002), 129.  doi: 10.1006/jcta.2001.3201.  Google Scholar

[21]

R. Pemantle and M. Wilson, Asymptotics of multivariate sequences, II. Multiple points of the singular variety,, Combin. Probab. Comput., 13 (2004), 735.  doi: 10.1017/S0963548304006248.  Google Scholar

[22]

R. Pemantle and M. Wilson, Twenty combinatorial esxamples of asymptotics derived from multivariate generating functions,, SIAM Rev., 50 (2008), 199.  doi: 10.1137/050643866.  Google Scholar

[23]

K. Ziemian, Rotation sets for subshifts of finite type,, Fundamenta Mathematicae, 146 (1995), 189.   Google Scholar

[24]

, SAGE is an open source mathematics software,, See , ().   Google Scholar

[1]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[4]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[5]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[6]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[7]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[10]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[13]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (1)

[Back to Top]