December  2015, 20(10): 3385-3401. doi: 10.3934/dcdsb.2015.20.3385

Directional complexity and entropy for lift mappings

1. 

Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potosí, Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P, Mexico

2. 

Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS et Université Paris 7-Denis Diderot, 10, rue Alice Domon et Léonie Duquet 75205 Paris Cedex 13, France

3. 

Instituto de Investigación en Comunicación Óptica, Universidad Autónoma de San Luis Potos, Karakorum 1470, Lomas 4a 78220, San Luis Potosi, S.L.P, Mexico

Received  December 2014 Revised  March 2015 Published  September 2015

We introduce and study the notion of a directional complexity and entropy for maps of degree $1$ on the circle. For piecewise affine Markov maps we use symbolic dynamics to relate this complexity to the symbolic complexity. We apply a combinatorial machinery to obtain exact formulas for the directional entropy, to find the maximal directional entropy, and to show that it equals the topological entropy of the map.
Citation: Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385
References:
[1]

in Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 9-30.  Google Scholar

[2]

AMS Studies in Advance Mathematics, 28, American Mathematical Society, Providence, RI, 2003.  Google Scholar

[3]

Nonlinearity, 17 (2004), 105-116. doi: 10.1088/0951-7715/17/1/007.  Google Scholar

[4]

Chaos, 13 (2003), 519-532. doi: 10.1063/1.1566171.  Google Scholar

[5]

Phys. Rep., 75 (1981), 287-325. doi: 10.1016/0370-1573(81)90186-1.  Google Scholar

[6]

Second Edition, {World Scientific}, 2000. doi: 10.1142/4205.  Google Scholar

[7]

Erg. Th. Dyn. Syst., 4 (1984), 493-498. doi: 10.1017/S0143385700002595.  Google Scholar

[8]

Int. Journal of bifurcation and Chaos, 18 (2008), 161-168. doi: 10.1142/S0218127408020203.  Google Scholar

[9]

Nonlinearity, 16 (2003), 1214-1238. doi: 10.1088/0951-7715/16/4/302.  Google Scholar

[10]

AMS Chelsea publishing, 1959.  Google Scholar

[11]

Trans. of AMS, 351 (1999), 2927-2948. doi: 10.1090/S0002-9947-99-02344-2.  Google Scholar

[12]

Ergod. Th. & Dynam. Sys, 29 (2009), 1163-1183. doi: 10.1017/S0143385708080620.  Google Scholar

[13]

Math. Proc. Camb. Phil. Soc., 89 (1981), 107-111. doi: 10.1017/S0305004100057984.  Google Scholar

[14]

Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.  Google Scholar

[15]

Usp. Mat. Nauk, 14 (1959), 3-86.  Google Scholar

[16]

PhD Thesis, SUNY et Stony Brook, 1995.  Google Scholar

[17]

in Disordered Systems and Biological Organization (Les Houches, 1985), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 20, Springer, Berlin, 1986, 113-115.  Google Scholar

[18]

Complex Syst., 2 (1988), 357-385.  Google Scholar

[19]

Inst. Hantes Études Sci Publ. Math., 57 (1983), 5-71.  Google Scholar

[20]

J. Combin. Theory Ser. A, 97 (2002), 129-161. doi: 10.1006/jcta.2001.3201.  Google Scholar

[21]

Combin. Probab. Comput., 13 (2004), 735-761. doi: 10.1017/S0963548304006248.  Google Scholar

[22]

SIAM Rev., 50 (2008), 199-272. doi: 10.1137/050643866.  Google Scholar

[23]

Fundamenta Mathematicae, 146 (1995), 189-201.  Google Scholar

[24]

, SAGE is an open source mathematics software,, See , ().   Google Scholar

show all references

References:
[1]

in Progress in nonlinear science, Vol. 1 (Nizhny Novgorod, 2001), RAS, Inst. Appl. Phys., Nizhniĭ Novgorod, 2002, 9-30.  Google Scholar

[2]

AMS Studies in Advance Mathematics, 28, American Mathematical Society, Providence, RI, 2003.  Google Scholar

[3]

Nonlinearity, 17 (2004), 105-116. doi: 10.1088/0951-7715/17/1/007.  Google Scholar

[4]

Chaos, 13 (2003), 519-532. doi: 10.1063/1.1566171.  Google Scholar

[5]

Phys. Rep., 75 (1981), 287-325. doi: 10.1016/0370-1573(81)90186-1.  Google Scholar

[6]

Second Edition, {World Scientific}, 2000. doi: 10.1142/4205.  Google Scholar

[7]

Erg. Th. Dyn. Syst., 4 (1984), 493-498. doi: 10.1017/S0143385700002595.  Google Scholar

[8]

Int. Journal of bifurcation and Chaos, 18 (2008), 161-168. doi: 10.1142/S0218127408020203.  Google Scholar

[9]

Nonlinearity, 16 (2003), 1214-1238. doi: 10.1088/0951-7715/16/4/302.  Google Scholar

[10]

AMS Chelsea publishing, 1959.  Google Scholar

[11]

Trans. of AMS, 351 (1999), 2927-2948. doi: 10.1090/S0002-9947-99-02344-2.  Google Scholar

[12]

Ergod. Th. & Dynam. Sys, 29 (2009), 1163-1183. doi: 10.1017/S0143385708080620.  Google Scholar

[13]

Math. Proc. Camb. Phil. Soc., 89 (1981), 107-111. doi: 10.1017/S0305004100057984.  Google Scholar

[14]

Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511809187.  Google Scholar

[15]

Usp. Mat. Nauk, 14 (1959), 3-86.  Google Scholar

[16]

PhD Thesis, SUNY et Stony Brook, 1995.  Google Scholar

[17]

in Disordered Systems and Biological Organization (Les Houches, 1985), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 20, Springer, Berlin, 1986, 113-115.  Google Scholar

[18]

Complex Syst., 2 (1988), 357-385.  Google Scholar

[19]

Inst. Hantes Études Sci Publ. Math., 57 (1983), 5-71.  Google Scholar

[20]

J. Combin. Theory Ser. A, 97 (2002), 129-161. doi: 10.1006/jcta.2001.3201.  Google Scholar

[21]

Combin. Probab. Comput., 13 (2004), 735-761. doi: 10.1017/S0963548304006248.  Google Scholar

[22]

SIAM Rev., 50 (2008), 199-272. doi: 10.1137/050643866.  Google Scholar

[23]

Fundamenta Mathematicae, 146 (1995), 189-201.  Google Scholar

[24]

, SAGE is an open source mathematics software,, See , ().   Google Scholar

[1]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[2]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[3]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[4]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[5]

Xiaochen Mao, Weijie Ding, Xiangyu Zhou, Song Wang, Xingyong Li. Complexity in time-delay networks of multiple interacting neural groups. Electronic Research Archive, , () : -. doi: 10.3934/era.2021022

[6]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[7]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[8]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3797-3816. doi: 10.3934/dcds.2021017

[9]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[10]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[11]

Shan-Shan Lin. Due-window assignment scheduling with learning and deterioration effects. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021081

[12]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[13]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[14]

Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021037

[15]

Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83

[16]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[17]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[18]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[19]

Valery Y. Glizer. Novel Conditions of Euclidean space controllability for singularly perturbed systems with input delay. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 307-320. doi: 10.3934/naco.2020027

[20]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (77)
  • HTML views (0)
  • Cited by (1)

[Back to Top]