# American Institute of Mathematical Sciences

December  2015, 20(10): 3403-3413. doi: 10.3934/dcdsb.2015.20.3403

## Semiconjugacy to a map of a constant slope

 1 Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona 2 Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, IN 46202

Received  October 2014 Revised  March 2015 Published  September 2015

It is well known that a continuous piecewise monotone interval map with positive topological entropy is semiconjugate to a map of a constant slope and the same entropy, and if it is additionally transitive then this semiconjugacy is actually a conjugacy. We generalize this result to piecewise continuous piecewise monotone interval maps, and as a consequence, get it also for piecewise monotone graph maps. We show that assigning to a continuous transitive piecewise monotone map of positive entropy a map of constant slope conjugate to it defines an operator, and show that this operator is not continuous.
Citation: Lluís Alsedà, Michał Misiurewicz. Semiconjugacy to a map of a constant slope. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3403-3413. doi: 10.3934/dcdsb.2015.20.3403
##### References:
 [1] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Second Edition, Advanced Series in Nonlinear Dynamics 5, World Scientific Publishing Co. Inc., River Edge, NJ, 2000. doi: 10.1142/4205. [2] A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk., 37 (1982), 189-190. [3] M. Denker, G. Keller and M. Urbañski, On the uniqueness of equilibrium states for piecewise monotone mappings, Studia Math., 97 (1990), 27-36. [4] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, Israel J. Math., 38 (1981), 107-115. doi: 10.1007/BF02761854. [5] T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192. doi: 10.1090/S0002-9947-1978-0457679-0. [6] J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps, Topology, 32 (1993), 649-664. doi: 10.1016/0040-9383(93)90014-M. [7] J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 465-563. doi: 10.1007/BFb0082847. [8] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 17-51. [9] M. Misiurewicz, Possible jumps of entropy for interval maps, Qualit. Th. Dyn. Sys., 2 (2001), 289-306. doi: 10.1007/BF02969344. [10] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. [11] M. Misiurewicz and K. Ziemian, Horseshoes and entropy for piecewise continuous piecewise monotone maps, in From Phase Transitions to Chaos, World Sci. Publ., River Edge, NJ, 1992, 489-500. [12] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378. doi: 10.1090/S0002-9947-1966-0197683-5. [13] P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math., 94 (1989), 17-33. [14] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 1982.

show all references

##### References:
 [1] Ll. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, Second Edition, Advanced Series in Nonlinear Dynamics 5, World Scientific Publishing Co. Inc., River Edge, NJ, 2000. doi: 10.1142/4205. [2] A. M. Blokh, Sensitive mappings of an interval, Uspekhi Mat. Nauk., 37 (1982), 189-190. [3] M. Denker, G. Keller and M. Urbañski, On the uniqueness of equilibrium states for piecewise monotone mappings, Studia Math., 97 (1990), 27-36. [4] F. Hofbauer, On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II, Israel J. Math., 38 (1981), 107-115. doi: 10.1007/BF02761854. [5] T.-Y. Li and J. A. Yorke, Ergodic transformations from an interval into itself, Trans. Amer. Math. Soc., 235 (1978), 183-192. doi: 10.1090/S0002-9947-1978-0457679-0. [6] J. Llibre and M. Misiurewicz, Horseshoes, entropy and periods for graph maps, Topology, 32 (1993), 649-664. doi: 10.1016/0040-9383(93)90014-M. [7] J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems (College Park, MD, 1986-87), Lecture Notes in Math., 1342, Springer, Berlin, 1988, 465-563. doi: 10.1007/BFb0082847. [8] M. Misiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math., 53 (1981), 17-51. [9] M. Misiurewicz, Possible jumps of entropy for interval maps, Qualit. Th. Dyn. Sys., 2 (2001), 289-306. doi: 10.1007/BF02969344. [10] M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. [11] M. Misiurewicz and K. Ziemian, Horseshoes and entropy for piecewise continuous piecewise monotone maps, in From Phase Transitions to Chaos, World Sci. Publ., River Edge, NJ, 1992, 489-500. [12] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc., 122 (1966), 368-378. doi: 10.1090/S0002-9947-1966-0197683-5. [13] P. Raith, Hausdorff dimension for piecewise monotonic maps, Studia Math., 94 (1989), 17-33. [14] P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 1982.
 [1] Jérôme Buzzi, Sylvie Ruette. Large entropy implies existence of a maximal entropy measure for interval maps. Discrete and Continuous Dynamical Systems, 2006, 14 (4) : 673-688. doi: 10.3934/dcds.2006.14.673 [2] Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 [3] Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 [4] James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353 [5] José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781 [6] Boris Hasselblatt, Zbigniew Nitecki, James Propp. Topological entropy for nonuniformly continuous maps. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 201-213. doi: 10.3934/dcds.2008.22.201 [7] Dongkui Ma, Min Wu. Topological pressure and topological entropy of a semigroup of maps. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 545-557 . doi: 10.3934/dcds.2011.31.545 [8] Michał Misiurewicz, Peter Raith. Strict inequalities for the entropy of transitive piecewise monotone maps. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 451-468. doi: 10.3934/dcds.2005.13.451 [9] Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461 [10] Samuel Roth. Constant slope models for finitely generated maps. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2541-2554. doi: 10.3934/dcds.2018106 [11] Jane Hawkins, Michael Taylor. The maximal entropy measure of Fatou boundaries. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4421-4431. doi: 10.3934/dcds.2018192 [12] Alejo Barrio Blaya, Víctor Jiménez López. On the relations between positive Lyapunov exponents, positive entropy, and sensitivity for interval maps. Discrete and Continuous Dynamical Systems, 2012, 32 (2) : 433-466. doi: 10.3934/dcds.2012.32.433 [13] José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415 [14] Tao Wang, Yu Huang. Weighted topological and measure-theoretic entropy. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3941-3967. doi: 10.3934/dcds.2019159 [15] Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105 [16] Jozef Bobok, Martin Soukenka. On piecewise affine interval maps with countably many laps. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 753-762. doi: 10.3934/dcds.2011.31.753 [17] Xueting Tian, Paulo Varandas. Topological entropy of level sets of empirical measures for non-uniformly expanding maps. Discrete and Continuous Dynamical Systems, 2017, 37 (10) : 5407-5431. doi: 10.3934/dcds.2017235 [18] Ghassen Askri. Li-Yorke chaos for dendrite maps with zero topological entropy and ω-limit sets. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 2957-2976. doi: 10.3934/dcds.2017127 [19] Wacław Marzantowicz, Feliks Przytycki. Estimates of the topological entropy from below for continuous self-maps on some compact manifolds. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 501-512. doi: 10.3934/dcds.2008.21.501 [20] Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

2021 Impact Factor: 1.497

## Metrics

• PDF downloads (188)
• HTML views (0)
• Cited by (5)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]