\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Formulas for the topological entropy of multimodal maps based on min-max symbols

Abstract Related Papers Cited by
  • In this paper, a new formula for the topological entropy of a multimodal map $f$ is derived, and some basic properties are studied. By a formula we mean an analytical expression leading to a numerical algorithm; by a multimodal map we mean a continuous interval self-map which is strictly monotonic in a finite number of subintervals. The main feature of this formula is that it involves the min-max symbols of $f$, which are closely related to its kneading symbols. This way we continue our pursuit of finding expressions for the topological entropy of continuous multimodal maps based on min-max symbols. As in previous cases, which will be also reviewed, the main geometrical ingredients of the new formula are the numbers of transversal crossings of the graph of $f$ and its iterates with the so-called "critical lines". The theoretical and practical underpinnings are worked out with the family of logistic parabolas and numerical simulations.
    Mathematics Subject Classification: Primary: 37B40, 37E05; Secondary: 37B10, 65Dxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Mat. Soc., 114 (1965), 309-319.doi: 10.1090/S0002-9947-1965-0175106-9.

    [2]

    L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific, Singapore, 2000.doi: 10.1142/4205.

    [3]

    J. M. Amigó, R. Dilão and A. Giménez, Computing the topological entropy of multimodal maps via Min-Max sequences, Entropy, 14 (2012), 742-768.doi: 10.3390/e14040742.

    [4]

    J. M. Amigó and A. Giménez, A Simplified algorithm for the topological entropy of multimodal maps, Entropy, 16 (2014), 627-644.doi: 10.3390/e16020627.

    [5]

    S. L. Baldwin and E. E. Slaminka, Calculating topological entropy, J. Statist. Phys., 89 (1997), 1017-1033.doi: 10.1007/BF02764219.

    [6]

    L. Block, J. Keesling, S. Li and K. Peterson, An improved algorithm for computing topological entropy, J. Statist. Phys., 55 (1989), 929-939.doi: 10.1007/BF01041072.

    [7]

    L. Block and J. Keesling, Computing the topological entropy of maps pf the interval with three monotone pieces, J. Statist. Phys., 66 (1991), 755-774.doi: 10.1007/BF01055699.

    [8]

    P. Collet, J. P. Crutchfield and J. P. Eckmann, Computing the topological entropy of maps, Comm. Math. Phys., 88 (1983), 257-262.doi: 10.1007/BF01209479.

    [9]

    J. Dias de Deus, R. Dilão and J. Taborda Duarte, Topological entropy and approaches to chaos in dynamics of the interval, Phys. Lett., 90 (1982), 1-4.doi: 10.1016/0375-9601(82)90033-0.

    [10]

    R. Dilão, Maps of the interval, Symbolic Dynamics, Topological Entropy and Periodic Behavior (in Portuguese), Ph.D. Thesis, Instituto Superior Técnico, Lisbon, 1985.

    [11]

    R. Dilão and J. M. Amigó, Computing the topological entropy of unimodal maps, International Journal of Bifurcations and Chaos, 22 (2012), 1250152, 14pp.doi: 10.1142/S0218127412501520.

    [12]

    A. Douady, Topological entropy of unimodal maps: Monotonicity for cuadratic polynomials, in Real and Complex Dynamical Systems (eds. B. Branner and P. Hjorth), 464, Kluwer, 1995, 65-87.

    [13]

    G. Froyland, R. Murray and D. Terhesiu, Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension, Phys. Rev. E, 76 (2007), 036702, 5pp.doi: 10.1103/PhysRevE.76.036702.

    [14]

    P. Góra and A. Boyarsky, Computing the topological entropy of general one-dimensional maps, Trans. Amer. Math. Soc., 323 (1991), 39-49.doi: 10.1090/S0002-9947-1991-1062871-7.

    [15]

    W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993.doi: 10.1007/978-3-642-78043-1.

    [16]

    J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems (ed. J. C. Alexander), Lectures Notes in Mathematics, 1342, Springer, 1988, 465-563.doi: 10.1007/BFb0082847.

    [17]

    M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63.

    [18]

    T. Steinberger, Computing the topological entropy for piecewise monotonic maps on the interval, J. Statist. Phys., 95 (1999), 287-303.doi: 10.1023/A:1004585613252.

    [19]

    M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Erg. & Dyn. Syst., 20 (2000), 925-933.doi: 10.1017/S014338570000050X.

    [20]

    P. Walters, An Introduction to Ergodic Theory, Springer Verlag, New York, 2000.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(274) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return