Citation: |
[1] |
R. Adler, A. Konheim and M. McAndrew, Topological entropy, Trans. Amer. Mat. Soc., 114 (1965), 309-319.doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific, Singapore, 2000.doi: 10.1142/4205. |
[3] |
J. M. Amigó, R. Dilão and A. Giménez, Computing the topological entropy of multimodal maps via Min-Max sequences, Entropy, 14 (2012), 742-768.doi: 10.3390/e14040742. |
[4] |
J. M. Amigó and A. Giménez, A Simplified algorithm for the topological entropy of multimodal maps, Entropy, 16 (2014), 627-644.doi: 10.3390/e16020627. |
[5] |
S. L. Baldwin and E. E. Slaminka, Calculating topological entropy, J. Statist. Phys., 89 (1997), 1017-1033.doi: 10.1007/BF02764219. |
[6] |
L. Block, J. Keesling, S. Li and K. Peterson, An improved algorithm for computing topological entropy, J. Statist. Phys., 55 (1989), 929-939.doi: 10.1007/BF01041072. |
[7] |
L. Block and J. Keesling, Computing the topological entropy of maps pf the interval with three monotone pieces, J. Statist. Phys., 66 (1991), 755-774.doi: 10.1007/BF01055699. |
[8] |
P. Collet, J. P. Crutchfield and J. P. Eckmann, Computing the topological entropy of maps, Comm. Math. Phys., 88 (1983), 257-262.doi: 10.1007/BF01209479. |
[9] |
J. Dias de Deus, R. Dilão and J. Taborda Duarte, Topological entropy and approaches to chaos in dynamics of the interval, Phys. Lett., 90 (1982), 1-4.doi: 10.1016/0375-9601(82)90033-0. |
[10] |
R. Dilão, Maps of the interval, Symbolic Dynamics, Topological Entropy and Periodic Behavior (in Portuguese), Ph.D. Thesis, Instituto Superior Técnico, Lisbon, 1985. |
[11] |
R. Dilão and J. M. Amigó, Computing the topological entropy of unimodal maps, International Journal of Bifurcations and Chaos, 22 (2012), 1250152, 14pp.doi: 10.1142/S0218127412501520. |
[12] |
A. Douady, Topological entropy of unimodal maps: Monotonicity for cuadratic polynomials, in Real and Complex Dynamical Systems (eds. B. Branner and P. Hjorth), 464, Kluwer, 1995, 65-87. |
[13] |
G. Froyland, R. Murray and D. Terhesiu, Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension, Phys. Rev. E, 76 (2007), 036702, 5pp.doi: 10.1103/PhysRevE.76.036702. |
[14] |
P. Góra and A. Boyarsky, Computing the topological entropy of general one-dimensional maps, Trans. Amer. Math. Soc., 323 (1991), 39-49.doi: 10.1090/S0002-9947-1991-1062871-7. |
[15] |
W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993.doi: 10.1007/978-3-642-78043-1. |
[16] |
J. Milnor and W. Thurston, On iterated maps of the interval, in Dynamical Systems (ed. J. C. Alexander), Lectures Notes in Mathematics, 1342, Springer, 1988, 465-563.doi: 10.1007/BFb0082847. |
[17] |
M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings, Studia Math., 67 (1980), 45-63. |
[18] |
T. Steinberger, Computing the topological entropy for piecewise monotonic maps on the interval, J. Statist. Phys., 95 (1999), 287-303.doi: 10.1023/A:1004585613252. |
[19] |
M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family, Erg. & Dyn. Syst., 20 (2000), 925-933.doi: 10.1017/S014338570000050X. |
[20] |
P. Walters, An Introduction to Ergodic Theory, Springer Verlag, New York, 2000. |