December  2015, 20(10): 3415-3434. doi: 10.3934/dcdsb.2015.20.3415

Formulas for the topological entropy of multimodal maps based on min-max symbols

1. 

Universidad Miguel Hernández, Centro de Investigación Operativa, Avda. Universidad s/n, Elche (Alicante), 03202, Spain

Received  December 2014 Revised  March 2015 Published  September 2015

In this paper, a new formula for the topological entropy of a multimodal map $f$ is derived, and some basic properties are studied. By a formula we mean an analytical expression leading to a numerical algorithm; by a multimodal map we mean a continuous interval self-map which is strictly monotonic in a finite number of subintervals. The main feature of this formula is that it involves the min-max symbols of $f$, which are closely related to its kneading symbols. This way we continue our pursuit of finding expressions for the topological entropy of continuous multimodal maps based on min-max symbols. As in previous cases, which will be also reviewed, the main geometrical ingredients of the new formula are the numbers of transversal crossings of the graph of $f$ and its iterates with the so-called "critical lines". The theoretical and practical underpinnings are worked out with the family of logistic parabolas and numerical simulations.
Citation: José M. Amigó, Ángel Giménez. Formulas for the topological entropy of multimodal maps based on min-max symbols. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3415-3434. doi: 10.3934/dcdsb.2015.20.3415
References:
[1]

R. Adler, A. Konheim and M. McAndrew, Topological entropy,, Trans. Amer. Mat. Soc., 114 (1965), 309.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, World Scientific, (2000).  doi: 10.1142/4205.  Google Scholar

[3]

J. M. Amigó, R. Dilão and A. Giménez, Computing the topological entropy of multimodal maps via Min-Max sequences,, Entropy, 14 (2012), 742.  doi: 10.3390/e14040742.  Google Scholar

[4]

J. M. Amigó and A. Giménez, A Simplified algorithm for the topological entropy of multimodal maps,, Entropy, 16 (2014), 627.  doi: 10.3390/e16020627.  Google Scholar

[5]

S. L. Baldwin and E. E. Slaminka, Calculating topological entropy,, J. Statist. Phys., 89 (1997), 1017.  doi: 10.1007/BF02764219.  Google Scholar

[6]

L. Block, J. Keesling, S. Li and K. Peterson, An improved algorithm for computing topological entropy,, J. Statist. Phys., 55 (1989), 929.  doi: 10.1007/BF01041072.  Google Scholar

[7]

L. Block and J. Keesling, Computing the topological entropy of maps pf the interval with three monotone pieces,, J. Statist. Phys., 66 (1991), 755.  doi: 10.1007/BF01055699.  Google Scholar

[8]

P. Collet, J. P. Crutchfield and J. P. Eckmann, Computing the topological entropy of maps,, Comm. Math. Phys., 88 (1983), 257.  doi: 10.1007/BF01209479.  Google Scholar

[9]

J. Dias de Deus, R. Dilão and J. Taborda Duarte, Topological entropy and approaches to chaos in dynamics of the interval,, Phys. Lett., 90 (1982), 1.  doi: 10.1016/0375-9601(82)90033-0.  Google Scholar

[10]

R. Dilão, Maps of the interval, Symbolic Dynamics, Topological Entropy and Periodic Behavior (in Portuguese),, Ph.D. Thesis, (1985).   Google Scholar

[11]

R. Dilão and J. M. Amigó, Computing the topological entropy of unimodal maps,, International Journal of Bifurcations and Chaos, 22 (2012).  doi: 10.1142/S0218127412501520.  Google Scholar

[12]

A. Douady, Topological entropy of unimodal maps: Monotonicity for cuadratic polynomials,, in Real and Complex Dynamical Systems (eds. B. Branner and P. Hjorth), (1995), 65.   Google Scholar

[13]

G. Froyland, R. Murray and D. Terhesiu, Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension,, Phys. Rev. E, 76 (2007).  doi: 10.1103/PhysRevE.76.036702.  Google Scholar

[14]

P. Góra and A. Boyarsky, Computing the topological entropy of general one-dimensional maps,, Trans. Amer. Math. Soc., 323 (1991), 39.  doi: 10.1090/S0002-9947-1991-1062871-7.  Google Scholar

[15]

W. de Melo and S. van Strien, One-Dimensional Dynamics,, Springer, (1993).  doi: 10.1007/978-3-642-78043-1.  Google Scholar

[16]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical Systems (ed. J. C. Alexander), (1342), 465.  doi: 10.1007/BFb0082847.  Google Scholar

[17]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.   Google Scholar

[18]

T. Steinberger, Computing the topological entropy for piecewise monotonic maps on the interval,, J. Statist. Phys., 95 (1999), 287.  doi: 10.1023/A:1004585613252.  Google Scholar

[19]

M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family,, Erg. & Dyn. Syst., 20 (2000), 925.  doi: 10.1017/S014338570000050X.  Google Scholar

[20]

P. Walters, An Introduction to Ergodic Theory,, Springer Verlag, (2000).   Google Scholar

show all references

References:
[1]

R. Adler, A. Konheim and M. McAndrew, Topological entropy,, Trans. Amer. Mat. Soc., 114 (1965), 309.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

L. Alsedà, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, World Scientific, (2000).  doi: 10.1142/4205.  Google Scholar

[3]

J. M. Amigó, R. Dilão and A. Giménez, Computing the topological entropy of multimodal maps via Min-Max sequences,, Entropy, 14 (2012), 742.  doi: 10.3390/e14040742.  Google Scholar

[4]

J. M. Amigó and A. Giménez, A Simplified algorithm for the topological entropy of multimodal maps,, Entropy, 16 (2014), 627.  doi: 10.3390/e16020627.  Google Scholar

[5]

S. L. Baldwin and E. E. Slaminka, Calculating topological entropy,, J. Statist. Phys., 89 (1997), 1017.  doi: 10.1007/BF02764219.  Google Scholar

[6]

L. Block, J. Keesling, S. Li and K. Peterson, An improved algorithm for computing topological entropy,, J. Statist. Phys., 55 (1989), 929.  doi: 10.1007/BF01041072.  Google Scholar

[7]

L. Block and J. Keesling, Computing the topological entropy of maps pf the interval with three monotone pieces,, J. Statist. Phys., 66 (1991), 755.  doi: 10.1007/BF01055699.  Google Scholar

[8]

P. Collet, J. P. Crutchfield and J. P. Eckmann, Computing the topological entropy of maps,, Comm. Math. Phys., 88 (1983), 257.  doi: 10.1007/BF01209479.  Google Scholar

[9]

J. Dias de Deus, R. Dilão and J. Taborda Duarte, Topological entropy and approaches to chaos in dynamics of the interval,, Phys. Lett., 90 (1982), 1.  doi: 10.1016/0375-9601(82)90033-0.  Google Scholar

[10]

R. Dilão, Maps of the interval, Symbolic Dynamics, Topological Entropy and Periodic Behavior (in Portuguese),, Ph.D. Thesis, (1985).   Google Scholar

[11]

R. Dilão and J. M. Amigó, Computing the topological entropy of unimodal maps,, International Journal of Bifurcations and Chaos, 22 (2012).  doi: 10.1142/S0218127412501520.  Google Scholar

[12]

A. Douady, Topological entropy of unimodal maps: Monotonicity for cuadratic polynomials,, in Real and Complex Dynamical Systems (eds. B. Branner and P. Hjorth), (1995), 65.   Google Scholar

[13]

G. Froyland, R. Murray and D. Terhesiu, Efficient computation of topological entropy, pressure, conformal measures, and equilibrium states in one dimension,, Phys. Rev. E, 76 (2007).  doi: 10.1103/PhysRevE.76.036702.  Google Scholar

[14]

P. Góra and A. Boyarsky, Computing the topological entropy of general one-dimensional maps,, Trans. Amer. Math. Soc., 323 (1991), 39.  doi: 10.1090/S0002-9947-1991-1062871-7.  Google Scholar

[15]

W. de Melo and S. van Strien, One-Dimensional Dynamics,, Springer, (1993).  doi: 10.1007/978-3-642-78043-1.  Google Scholar

[16]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical Systems (ed. J. C. Alexander), (1342), 465.  doi: 10.1007/BFb0082847.  Google Scholar

[17]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.   Google Scholar

[18]

T. Steinberger, Computing the topological entropy for piecewise monotonic maps on the interval,, J. Statist. Phys., 95 (1999), 287.  doi: 10.1023/A:1004585613252.  Google Scholar

[19]

M. Tsujii, A simple proof for monotonicity of entropy in the quadratic family,, Erg. & Dyn. Syst., 20 (2000), 925.  doi: 10.1017/S014338570000050X.  Google Scholar

[20]

P. Walters, An Introduction to Ergodic Theory,, Springer Verlag, (2000).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[3]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[4]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[5]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[6]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[8]

Ningyu Sha, Lei Shi, Ming Yan. Fast algorithms for robust principal component analysis with an upper bound on the rank. Inverse Problems & Imaging, 2021, 15 (1) : 109-128. doi: 10.3934/ipi.2020067

[9]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[10]

Yunping Jiang. Global graph of metric entropy on expanding Blaschke products. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1469-1482. doi: 10.3934/dcds.2020325

[11]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[12]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[13]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[14]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[15]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[16]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[17]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[18]

Yu Jin, Xiang-Qiang Zhao. The spatial dynamics of a Zebra mussel model in river environments. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020362

[19]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[20]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]