December  2015, 20(10): 3461-3474. doi: 10.3934/dcdsb.2015.20.3461

Topological entropy for set-valued maps

1. 

Departamento de Matemática, Universidad del Bío, Bío Av. Collao # 1202, Casilla 5-C, VIII-Región, Concepción, Chile

2. 

Instituto de Matemática y Ciencias Afines (IMCA), Universidad Nacional de Ingeniería, Calle Los Biólogos 245, Urb. San César La Molina, Lima 12, Lima, Peru

3. 

Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil

Received  April 2015 Revised  May 2015 Published  September 2015

In this paper we define and study the topological entropy of a set-valued dynamical system. Actually, we obtain two entropies based on separated and spanning sets. Some properties of these entropies resembling the single-valued case will be obtained.
Citation: Dante Carrasco-Olivera, Roger Metzger Alvan, Carlos Arnoldo Morales Rojas. Topological entropy for set-valued maps. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3461-3474. doi: 10.3934/dcdsb.2015.20.3461
References:
[1]

R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,, Trans. Amer. Math. Soc., 114 (1965), 309.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

E. Akin, The General Topology of Dynamical Systems,, Graduate Studies in Mathematics, (1993).   Google Scholar

[3]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory,, Grundlehren der Mathematischen Wissenschaften, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[4]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhäuser Boston, (1990).   Google Scholar

[5]

J.-P. Aubin, H. Frankowska and A. Lasota, Poincaré's recurrence theorem for set-valued dynamical systems,, Ann. Polon. Math., 54 (1991), 85.   Google Scholar

[6]

L. M. Blumenthal, A new concept in distance geometry with applications to spherical subsets,, Bull. Amer. Math. Soc., 47 (1941), 435.  doi: 10.1090/S0002-9904-1941-07471-9.  Google Scholar

[7]

L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht,, Wiener Berichte, 76 (1877), 373.   Google Scholar

[8]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[9]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511755316.  Google Scholar

[10]

R. S. Burachik and A. N. Iusem, Set-valued Mappings and Enlargements of Monotone Operators,, Springer Optimization and Its Applications, (2008).   Google Scholar

[11]

L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow,, Lecture Notes in Economics and Mathematical Systems, (1978).   Google Scholar

[12]

M. Ciklová, Dynamical systems generated by functions with connected $G_\delta$ graphs,, Real Anal. Exchange, 30 (): 617.   Google Scholar

[13]

R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie,, Annalen der Physik, 125 (): 353.   Google Scholar

[14]

R. Clausius, The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies,, John van Voorst, (1867).   Google Scholar

[15]

E. I. Dinaburg, A correlation between topological entropy and metric entropy (Russian),, Dokl. Akad. Nauk SSSR, 190 (1970), 19.   Google Scholar

[16]

T. Downarowicz, Entropy in Dynamical Systems,, New Mathematical Monographs, (2011).  doi: 10.1017/CBO9780511976155.  Google Scholar

[17]

B. E. Gillam, A new set of postulates for euclidean geometry,, Revista Ci. Lima, 42 (1940), 869.   Google Scholar

[18]

A. Katok, Fifty years of entropy in dynamics: 1958-2007,, J. Mod. Dyn., 1 (2007), 545.  doi: 10.3934/jmd.2007.1.545.  Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.   Google Scholar

[20]

A. Y. Khinchin, On the basic theorems of information theory,, Uspehi Mat. Nauk (N.S.), 11 (1956), 17.   Google Scholar

[21]

A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, (Russian), Topology, 169 (1985), 94.   Google Scholar

[22]

M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory,, SIAM J. Control Optimization, 14 (1976), 985.  doi: 10.1137/0314062.  Google Scholar

[23]

B. McMillan, The basic theorems of information theory,, Ann. Math. Statistics, 24 (1953), 196.  doi: 10.1214/aoms/1177729028.  Google Scholar

[24]

W. M. Miller, Frobenius-Perron operators and approximation of invariant measures for set-valued dynamical systems,, Set-Valued Anal., 3 (1995), 181.  doi: 10.1007/BF01038599.  Google Scholar

[25]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems,, Trans. Amer. Math. Soc., 351 (1999), 1203.  doi: 10.1090/S0002-9947-99-02424-1.  Google Scholar

[26]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case,, Topol. Methods Nonlinear Anal., 32 (2008), 139.   Google Scholar

[27]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems, Hyperbolic case,, Topol. Methods Nonlinear Anal., 32 (2008), 151.   Google Scholar

[28]

R. T. Rockafellar, Convex Analysis,, Reprint of the 1970 original, (1970).   Google Scholar

[29]

Ja. Sinai, On the concept of entropy for a dynamic system, (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768.   Google Scholar

[30]

Y. Sinai, Kolmogorov-Sinai entropy,, Scholarpedia, 4 (2009).   Google Scholar

[31]

C. E. Shannon, A mathematical theory of communication,, Bell System Tech. J., 27 (1948), 379.  doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[32]

E. Tarafdar, P. Watson and X.-Z. Yuan, Poincare's recurrence theorems for set-valued dynamical systems,, Appl. Math. Lett., 10 (1997), 37.  doi: 10.1016/S0893-9659(97)00102-X.  Google Scholar

[33]

E. Tarafdar and X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima,, Acta Appl. Math., 46 (1997), 93.  doi: 10.1023/A:1005722506504.  Google Scholar

[34]

J. von Neumann, Mathematische Grundlagen der Quantenmechanik,, Unveränderter Nachdruck der ersten Auflage von 1932, (1932).   Google Scholar

[35]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[36]

A. J. Zaslavski, Convergence of trajectories of discrete dispersive dynamical systems,, Commun. Math. Anal., 4 (2008), 10.   Google Scholar

show all references

References:
[1]

R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy,, Trans. Amer. Math. Soc., 114 (1965), 309.  doi: 10.1090/S0002-9947-1965-0175106-9.  Google Scholar

[2]

E. Akin, The General Topology of Dynamical Systems,, Graduate Studies in Mathematics, (1993).   Google Scholar

[3]

J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory,, Grundlehren der Mathematischen Wissenschaften, (1984).  doi: 10.1007/978-3-642-69512-4.  Google Scholar

[4]

J.-P. Aubin and H. Frankowska, Set-valued Analysis,, Birkhäuser Boston, (1990).   Google Scholar

[5]

J.-P. Aubin, H. Frankowska and A. Lasota, Poincaré's recurrence theorem for set-valued dynamical systems,, Ann. Polon. Math., 54 (1991), 85.   Google Scholar

[6]

L. M. Blumenthal, A new concept in distance geometry with applications to spherical subsets,, Bull. Amer. Math. Soc., 47 (1941), 435.  doi: 10.1090/S0002-9904-1941-07471-9.  Google Scholar

[7]

L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht,, Wiener Berichte, 76 (1877), 373.   Google Scholar

[8]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[9]

M. Brin and G. Stuck, Introduction to Dynamical Systems,, Cambridge University Press, (2002).  doi: 10.1017/CBO9780511755316.  Google Scholar

[10]

R. S. Burachik and A. N. Iusem, Set-valued Mappings and Enlargements of Monotone Operators,, Springer Optimization and Its Applications, (2008).   Google Scholar

[11]

L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow,, Lecture Notes in Economics and Mathematical Systems, (1978).   Google Scholar

[12]

M. Ciklová, Dynamical systems generated by functions with connected $G_\delta$ graphs,, Real Anal. Exchange, 30 (): 617.   Google Scholar

[13]

R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie,, Annalen der Physik, 125 (): 353.   Google Scholar

[14]

R. Clausius, The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies,, John van Voorst, (1867).   Google Scholar

[15]

E. I. Dinaburg, A correlation between topological entropy and metric entropy (Russian),, Dokl. Akad. Nauk SSSR, 190 (1970), 19.   Google Scholar

[16]

T. Downarowicz, Entropy in Dynamical Systems,, New Mathematical Monographs, (2011).  doi: 10.1017/CBO9780511976155.  Google Scholar

[17]

B. E. Gillam, A new set of postulates for euclidean geometry,, Revista Ci. Lima, 42 (1940), 869.   Google Scholar

[18]

A. Katok, Fifty years of entropy in dynamics: 1958-2007,, J. Mod. Dyn., 1 (2007), 545.  doi: 10.3934/jmd.2007.1.545.  Google Scholar

[19]

A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms,, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137.   Google Scholar

[20]

A. Y. Khinchin, On the basic theorems of information theory,, Uspehi Mat. Nauk (N.S.), 11 (1956), 17.   Google Scholar

[21]

A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, (Russian), Topology, 169 (1985), 94.   Google Scholar

[22]

M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory,, SIAM J. Control Optimization, 14 (1976), 985.  doi: 10.1137/0314062.  Google Scholar

[23]

B. McMillan, The basic theorems of information theory,, Ann. Math. Statistics, 24 (1953), 196.  doi: 10.1214/aoms/1177729028.  Google Scholar

[24]

W. M. Miller, Frobenius-Perron operators and approximation of invariant measures for set-valued dynamical systems,, Set-Valued Anal., 3 (1995), 181.  doi: 10.1007/BF01038599.  Google Scholar

[25]

W. Miller and E. Akin, Invariant measures for set-valued dynamical systems,, Trans. Amer. Math. Soc., 351 (1999), 1203.  doi: 10.1090/S0002-9947-99-02424-1.  Google Scholar

[26]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case,, Topol. Methods Nonlinear Anal., 32 (2008), 139.   Google Scholar

[27]

S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems, Hyperbolic case,, Topol. Methods Nonlinear Anal., 32 (2008), 151.   Google Scholar

[28]

R. T. Rockafellar, Convex Analysis,, Reprint of the 1970 original, (1970).   Google Scholar

[29]

Ja. Sinai, On the concept of entropy for a dynamic system, (Russian), Dokl. Akad. Nauk SSSR, 124 (1959), 768.   Google Scholar

[30]

Y. Sinai, Kolmogorov-Sinai entropy,, Scholarpedia, 4 (2009).   Google Scholar

[31]

C. E. Shannon, A mathematical theory of communication,, Bell System Tech. J., 27 (1948), 379.  doi: 10.1002/j.1538-7305.1948.tb01338.x.  Google Scholar

[32]

E. Tarafdar, P. Watson and X.-Z. Yuan, Poincare's recurrence theorems for set-valued dynamical systems,, Appl. Math. Lett., 10 (1997), 37.  doi: 10.1016/S0893-9659(97)00102-X.  Google Scholar

[33]

E. Tarafdar and X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima,, Acta Appl. Math., 46 (1997), 93.  doi: 10.1023/A:1005722506504.  Google Scholar

[34]

J. von Neumann, Mathematische Grundlagen der Quantenmechanik,, Unveränderter Nachdruck der ersten Auflage von 1932, (1932).   Google Scholar

[35]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[36]

A. J. Zaslavski, Convergence of trajectories of discrete dispersive dynamical systems,, Commun. Math. Anal., 4 (2008), 10.   Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[4]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[5]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[6]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[7]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[8]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[9]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[10]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[11]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[14]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (117)
  • HTML views (0)
  • Cited by (5)

[Back to Top]