\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Topological entropy for set-valued maps

Abstract Related Papers Cited by
  • In this paper we define and study the topological entropy of a set-valued dynamical system. Actually, we obtain two entropies based on separated and spanning sets. Some properties of these entropies resembling the single-valued case will be obtained.
    Mathematics Subject Classification: Primary: 37B40; Secondary: 54C60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.doi: 10.1090/S0002-9947-1965-0175106-9.

    [2]

    E. Akin, The General Topology of Dynamical Systems, Graduate Studies in Mathematics, 1, American Mathematical Society, Providence, RI, 1993.

    [3]

    J.-P. Aubin and A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Grundlehren der Mathematischen Wissenschaften, 264, Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-642-69512-4.

    [4]

    J.-P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser Boston, Inc., Boston, MA, 1990; Modern Birkhäuser Classics, Birkhüser Boston, Inc., Boston, MA, 2009.

    [5]

    J.-P. Aubin, H. Frankowska and A. Lasota, Poincaré's recurrence theorem for set-valued dynamical systems, Ann. Polon. Math., 54 (1991), 85-91.

    [6]

    L. M. Blumenthal, A new concept in distance geometry with applications to spherical subsets, Bull. Amer. Math. Soc., 47 (1941), 435-443.doi: 10.1090/S0002-9904-1941-07471-9.

    [7]

    L. Boltzmann, Über die beziehung dem zweiten Haubtsatze der mechanischen Wärmetheorie und der Wahrscheinlichkeitsrechnung respektive den Sätzen über das Wärmegleichgewicht, Wiener Berichte, 76 (1877), 373-435.

    [8]

    R. Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153 (1971), 401-414.doi: 10.1090/S0002-9947-1971-0274707-X.

    [9]

    M. Brin and G. Stuck, Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002.doi: 10.1017/CBO9780511755316.

    [10]

    R. S. Burachik and A. N. Iusem, Set-valued Mappings and Enlargements of Monotone Operators, Springer Optimization and Its Applications, 8, Springer, New York, 2008.

    [11]

    L. J. Cherene, Jr., Set Valued Dynamical Systems and Economic Flow, Lecture Notes in Economics and Mathematical Systems, 158, Springer-Verlag, Berlin-New York, 1978.

    [12]

    M. Ciklová, Dynamical systems generated by functions with connected $G_\delta$ graphs, Real Anal. Exchange, 30 (2004/05), 617-637.

    [13]

    R. Clausius, Ueber verschiedene für die Anwendung bequeme Formen der Hauptgleichungen der mechanischen Wärmetheorie, Annalen der Physik, 125, 353-400.

    [14]

    R. Clausius, The Mechanical Theory of Heat - with its Applications to the Steam Engine and to Physical Properties of Bodies, John van Voorst, London, 1867.

    [15]

    E. I. Dinaburg, A correlation between topological entropy and metric entropy (Russian), Dokl. Akad. Nauk SSSR, 190 (1970), 19-22.

    [16]

    T. Downarowicz, Entropy in Dynamical Systems, New Mathematical Monographs, 18, Cambridge University Press, Cambridge, 2011.doi: 10.1017/CBO9780511976155.

    [17]

    B. E. Gillam, A new set of postulates for euclidean geometry, Revista Ci. Lima, 42 (1940), 869-899.

    [18]

    A. Katok, Fifty years of entropy in dynamics: 1958-2007, J. Mod. Dyn., 1 (2007), 545-596.doi: 10.3934/jmd.2007.1.545.

    [19]

    A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 51 (1980), 137-173.

    [20]

    A. Y. Khinchin, On the basic theorems of information theory, Uspehi Mat. Nauk (N.S.), 11 (1956), 17-75.

    [21]

    A. N. Kolmogorov, A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces, (Russian) Topology, ordinary differential equations, dynamical systems, Trudy Mat. Inst. Steklov., 169 (1985), 94-98, 254.

    [22]

    M. Maschler and B. Peleg, Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control Optimization, 14 (1976), 985-995.doi: 10.1137/0314062.

    [23]

    B. McMillan, The basic theorems of information theory, Ann. Math. Statistics, 24 (1953), 196-219.doi: 10.1214/aoms/1177729028.

    [24]

    W. M. Miller, Frobenius-Perron operators and approximation of invariant measures for set-valued dynamical systems, Set-Valued Anal., 3 (1995), 181-194.doi: 10.1007/BF01038599.

    [25]

    W. Miller and E. Akin, Invariant measures for set-valued dynamical systems, Trans. Amer. Math. Soc., 351 (1999), 1203-1225.doi: 10.1090/S0002-9947-99-02424-1.

    [26]

    S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems. Contractive case, Topol. Methods Nonlinear Anal., 32 (2008), 139-149.

    [27]

    S. Y. Pilyugin and J. Rieger, Shadowing and inverse shadowing in set-valued dynamical systems, Hyperbolic case, Topol. Methods Nonlinear Anal., 32 (2008), 151-164.

    [28]

    R. T. Rockafellar, Convex Analysis, Reprint of the 1970 original, Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ, 1997.

    [29]

    Ja. Sinai, On the concept of entropy for a dynamic system, (Russian) Dokl. Akad. Nauk SSSR, 124 (1959), 768-771.

    [30]

    Y. Sinai, Kolmogorov-Sinai entropy, Scholarpedia, 4 (2009), p2034.

    [31]

    C. E. Shannon, A mathematical theory of communication, Bell System Tech. J., 27 (1948), 379-423, 623-656.doi: 10.1002/j.1538-7305.1948.tb01338.x.

    [32]

    E. Tarafdar, P. Watson and X.-Z. Yuan, Poincare's recurrence theorems for set-valued dynamical systems, Appl. Math. Lett., 10 (1997), 37-44.doi: 10.1016/S0893-9659(97)00102-X.

    [33]

    E. Tarafdar and X.-Z. Yuan, The set-valued dynamic system and its applications to Pareto optima, Acta Appl. Math., 46 (1997), 93-106.doi: 10.1023/A:1005722506504.

    [34]

    J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Unveränderter Nachdruck der ersten Auflage von 1932, Die Grundlehren der mathematischen Wissenschaften, Band 38, Springer-Verlag, Berlin-New York, 1968.

    [35]

    P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982.

    [36]

    A. J. Zaslavski, Convergence of trajectories of discrete dispersive dynamical systems, Commun. Math. Anal., 4 (2008), 10-19.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(483) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return