December  2015, 20(10): 3475-3485. doi: 10.3934/dcdsb.2015.20.3475

A note on specification for iterated function systems

1. 

Department of Mathematics, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, CT, 21945-970, Brazil

2. 

Mathematics Department, The Pennsylvania State University, State College, PA 16802, United States

3. 

Department of Mathematics, Graduate School of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810

Received  December 2014 Revised  March 2015 Published  September 2015

We introduce several notions of specification for iterated function systems and exhibit some of their dynamical properties. In particular, we show that topological entropy and algebraic pressure [4] of systems with specification are approximable by the corresponding expressions for finitely generated iterated function systems.
Citation: Welington Cordeiro, Manfred Denker, Michiko Yuri. A note on specification for iterated function systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3475-3485. doi: 10.3934/dcdsb.2015.20.3475
References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[2]

M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts,, Discrete Contin. Dyn. Syst., 22 (2008), 131.  doi: 10.3934/dcds.2008.22.131.  Google Scholar

[3]

M. Denker, Einführung in die Analysis Dynamischer Systeme,, Springer-Lehrbuch, (2005).   Google Scholar

[4]

M. Denker and M. Yuri, Conformal families of measures for general iterated function systems,, Contemporary Math., 631 (2015), 93.  doi: 10.1090/conm/631/12598.  Google Scholar

[5]

B. M. Gurevic, Topological entropy for denumerable Markov chains,, Dokl. Akad. Nauk., SSSR 187 (1969), 715.   Google Scholar

[6]

O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergodic Theory & Dynamical Systems, 19 (1999), 1565.  doi: 10.1017/S0143385799146820.  Google Scholar

[7]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

show all references

References:
[1]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401.  doi: 10.1090/S0002-9947-1971-0274707-X.  Google Scholar

[2]

M. Denker, Y. Kifer and M. Stadlbauer, Thermodynamic formalism for random countable Markov shifts,, Discrete Contin. Dyn. Syst., 22 (2008), 131.  doi: 10.3934/dcds.2008.22.131.  Google Scholar

[3]

M. Denker, Einführung in die Analysis Dynamischer Systeme,, Springer-Lehrbuch, (2005).   Google Scholar

[4]

M. Denker and M. Yuri, Conformal families of measures for general iterated function systems,, Contemporary Math., 631 (2015), 93.  doi: 10.1090/conm/631/12598.  Google Scholar

[5]

B. M. Gurevic, Topological entropy for denumerable Markov chains,, Dokl. Akad. Nauk., SSSR 187 (1969), 715.   Google Scholar

[6]

O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergodic Theory & Dynamical Systems, 19 (1999), 1565.  doi: 10.1017/S0143385799146820.  Google Scholar

[7]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[13]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[16]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[17]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (0)

[Back to Top]