Citation: |
[1] |
R. L. Adler, A. G. Konheim and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319.doi: 10.1090/S0002-9947-1965-0175106-9. |
[2] |
R. P. Anstee, L. Rónyai and A. Sali, Shattering news, Graphs Combin., 18 (2002), 59-73.doi: 10.1007/s003730200003. |
[3] |
F. Balibrea, J. Smítal and M. Štefánková, The three versions of distributional chaos, Chaos Solitons Fractals, 23 (2005), 1581-1583.doi: 10.1016/j.chaos.2004.06.011. |
[4] |
J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos, Amer. Math. Monthly, 99 (1992), 332-334.doi: 10.2307/2324899. |
[5] |
F. Blanchard, Topological chaos: What may this mean?, J. Difference Equ. Appl., 15 (2009), 23-46.doi: 10.1080/10236190802385355. |
[6] |
F. Blanchard, E. Glasner, S. Kolyada and A. Maass, On Li-Yorke pairs, J. Reine Angew. Math., 547 (2002), 51-68.doi: 10.1515/crll.2002.053. |
[7] |
F. Blanchard and W. Huang, Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst., 20 (2008), 275-311. |
[8] |
F. Blanchard, W. Huang and L. Snoha, Topological size of scrambled sets, Colloq. Math., 110 (2008), 293-361.doi: 10.4064/cm110-2-3. |
[9] |
R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 2003. |
[10] |
T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc., 142 (2014), 137-149.doi: 10.1090/S0002-9939-2013-11717-X. |
[11] |
T. Downarowicz and X. Ye, When every point is either transitive or periodic, Colloq. Math., 93 (2002), 137-150.doi: 10.4064/cm93-1-9. |
[12] |
H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, 1 (1967), 1-49.doi: 10.1007/BF01692494. |
[13] |
E. Glasner and X. Ye, Local entropy theory, Ergodic Theory Dynam. Systems, 29 (2009), 321-356.doi: 10.1017/S0143385708080309. |
[14] |
E. Glasner and B. Weiss, Sensitive dependence on initial conditions, Nonlinearity, 6 (1993), 1067-1075.doi: 10.1088/0951-7715/6/6/014. |
[15] |
E. Glasner and B. Weiss, Quasi-factors of zero-entropy systems, J. Amer. Math. Soc., 8 (1995), 665-686.doi: 10.2307/2152926. |
[16] |
W. Huang and X. Ye, Devaney's chaos or 2-scattering implies Li-Yorke's chaos, Topology Appl., 117 (2002), 259-272.doi: 10.1016/S0166-8641(01)00025-6. |
[17] |
W. Huang and X. Ye, A local variational relation and applications, Israel J. Math., 151 (2006), 237-279.doi: 10.1007/BF02777364. |
[18] |
W. Huang, J. Li and X. Ye, Stable sets and mean Li-Yorke chaos in positive entropy systems, J. Funct. Anal., 266 (2014), 3377-3394.doi: 10.1016/j.jfa.2014.01.005. |
[19] |
M. G. Karpovsky and V. D. Milman, Coordinate density of sets of vectors, Discrete Math., 24 (1978), 177-184.doi: 10.1016/0012-365X(78)90197-8. |
[20] |
D. Kerr and H. Li, Independence in topological and $C^*$-dynamics, Math. Ann., 338 (2007), 869-926.doi: 10.1007/s00208-007-0097-z. |
[21] |
P. Komjáth and V. Totik, Problems and Theorems in Classical Set Theory, Problem Books in Mathematics, Springer, New York, 2006. |
[22] |
D. Kwietniak, Topological entropy and distributional chaos in hereditary shifts with applications to spacing shifts and beta shifts, Discrete Contin. Dyn. Syst., 33 (2013), 2451-2467.doi: 10.3934/dcds.2013.33.2451. |
[23] |
J. Li and X. Ye, Recent development of chaos theory in topological dynamics, to appear in Acta Math. Sin. (Engl. Ser.), (2015).doi: 10.1007/s10114-015-4574-0. |
[24] |
S. H. Li, $\omega$-chaos and topological entropy, Trans. Amer. Math. Soc., 339 (1993), 243-249.doi: 10.2307/2154217. |
[25] |
S. H. Li, Dynamical properties of the shift maps on the inverse limit spaces, Ergodic Theory Dynam. Systems, 12 (1992), 95-108.doi: 10.1017/S0143385700006611. |
[26] |
T. Y. Li and J. A. Yorke, Period three implies chaos, Amer. Math. Monthly, 82 (1975), 985-992.doi: 10.2307/2318254. |
[27] |
D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511626302. |
[28] |
P. Oprocha, Relations between distributional and Devaney chaos, Chaos, 16 (2006), 033112, 5pp.doi: 10.1063/1.2225513. |
[29] |
A. Pajor, Sous-espaces $l_1^n$ des Espaces de Banach, (French) [$l_1^n$-subspaces of Banach spaces] with an introduction by Gilles Pisier, Travaux en Cours [Works in Progress], 16, Hermann, Paris, 1985. |
[30] |
R. Peckner, Uniqueness of the measure of maximal entropy for the squarefree flow, Preprint, arXiv:1205.2905v6, to appear in Israel J. Math., 2014. |
[31] |
Y. Peres, A combinatorial application of the maximal ergodic theorem, Bull. London Math. Soc., 20 (1988), 248-252.doi: 10.1112/blms/20.3.248. |
[32] |
R. Pikuła, On enveloping semigroups of almost one-to-one extensions of minimal group rotations, Colloq. Math., 129 (2012), 249-262.doi: 10.4064/cm129-2-6. |
[33] |
I. Z. Ruzsa, On difference sets, Studia Sci. Math. Hungar., 13 (1978), 319-326 (1981). |
[34] |
N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A, 13 (1972), 145-147.doi: 10.1016/0097-3165(72)90019-2. |
[35] |
B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc., 344 (1994), 737-754.doi: 10.1090/S0002-9947-1994-1227094-X. |
[36] |
S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages, Pacific J. Math., 41 (1972), 247-261.doi: 10.2140/pjm.1972.41.247. |
[37] |
J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282.doi: 10.1090/S0002-9947-1986-0849479-9. |
[38] |
P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[39] |
B. Weiss, Topological transitivity and ergodic measures, Theory of Computing Systems, 5 (1971), 71-75.doi: 10.1007/BF01691469. |
[40] |
B. Weiss, Single Orbit Dynamics, CBMS Regional Conference Series in Mathematics, 95, American Mathematical Society, Providence, RI, 2000. |
[41] |
J. C. Xiong, A chaotic map with topological entropy, Acta Math. Sci. (English Ed.), 6 (1986), 439-443. |