-
Previous Article
Topological mixing, knot points and bounds of topological entropy
- DCDS-B Home
- This Issue
-
Next Article
Entropy determination based on the ordinal structure of a dynamical system
Directional uniformities, periodic points, and entropy
1. | Uppsala Universitet, Lägerhyddsvägen 1, Hus 1, 5 och 7, 75106 Uppsala, Sweden |
2. | Durham University, Durham DH1 3LE, United Kingdom |
References:
[1] |
L. M. Abramov, The entropy of an automorphism of a solenoidal group,, Teor. Veroyatnost. i Primenen, 4 (1959), 249.
|
[2] |
N. Ailon and Z. Rudnick, Torsion points on curves and common divisors of $a^k-1$ and $b^k-1$,, Acta Arith., 113 (2004), 31.
doi: 10.4064/aa113-1-3. |
[3] |
A. Baker, Transcendental Number Theory,, 2nd edition, (1990).
doi: 10.1017/CBO9780511565977. |
[4] |
P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle,, Acta Arith., 18 (1971), 355.
|
[5] |
M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55.
doi: 10.1090/S0002-9947-97-01634-6. |
[6] |
V. Chothi, G. Everest and T. Ward, $S$-integer dynamical systems: Periodic points,, J. Reine Angew. Math., 489 (1997), 99.
doi: 10.1515/crll.1997.489.99. |
[7] |
P. M. Cohn, Algebraic Numbers and Algebraic Functions,, Chapman and Hall Mathematics Series, (1991).
doi: 10.1007/978-1-4899-3444-4. |
[8] |
P. Corvaja and U. Zannier, A lower bound for the height of a rational function at $S$-unit points,, Monatsh. Math., 144 (2005), 203.
doi: 10.1007/s00605-004-0273-0. |
[9] |
E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial,, Acta Arith., 34 (1979), 391.
|
[10] |
M. Einsiedler and D. Lind, Algebraic $\mathbbZ^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799.
doi: 10.1090/S0002-9947-04-03554-8. |
[11] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbbZ^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695.
doi: 10.1017/S014338570100181X. |
[12] |
G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics,, Universitext, (1999).
doi: 10.1007/978-1-4471-3898-3. |
[13] |
D. Fried, Entropy for smooth abelian actions,, Proc. Amer. Math. Soc., 87 (1983), 111.
doi: 10.1090/S0002-9939-1983-0677244-7. |
[14] |
S. Friedland, Entropy of graphs, semigroups and groups},, in Ergodic Theory of $Z^d$ Actions (Warwick, (1996), 1993.
doi: 10.1017/CBO9780511662812.013. |
[15] |
W. Geller and M. Pollicott, An entropy for $\mathbb Z^2$-actions with finite entropy generators,, Dedicated to the memory of Wiesław Szlenk, 157 (1998), 209.
|
[16] |
A. Gorodnik and R. Spatzier, Mixing properties of commuting nilmanifold automorphisms,, , (). Google Scholar |
[17] |
A. Katok, S. Katok and F. R. Hertz, The Fried average entropy and slow entropy for actions of higher rank abelian groups,, Geometric and Functional Analysis, 24 (2014), 1204.
doi: 10.1007/s00039-014-0284-5. |
[18] |
B. Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691.
doi: 10.1017/S0143385700005290. |
[19] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).
|
[20] |
D. Lind, K. Schmidt and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups,, Invent. Math., 101 (1990), 593.
doi: 10.1007/BF01231517. |
[21] |
D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy,, Ergodic Theory Dynam. Systems, 8 (1988), 411.
doi: 10.1017/S0143385700004545. |
[22] |
R. Miles, A natural boundary for the dynamical zeta function for commuting group automorphisms,, Proc. Amer. Math. Soc., 143 (2015), 2927.
doi: 10.1090/S0002-9939-2015-12515-4. |
[23] |
R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567.
doi: 10.1017/S0143385706000794. |
[24] |
R. Miles, Finitely represented closed-orbit subdynamics for commuting automorphisms,, Ergodic Theory Dynam. Systems, 30 (2010), 1787.
doi: 10.1017/S0143385709000741. |
[25] |
R. Miles, Synchronization points and associated dynamical invariants,, Trans. Amer. Math. Soc., 365 (2013), 5503.
doi: 10.1090/S0002-9947-2013-05829-1. |
[26] |
R. Miles, M. Staines and T. Ward, Dynamical invariants for group automorphisms,, Contemp. Math., 631 (2015), 231.
doi: 10.1090/conm/631/12606. |
[27] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913.
doi: 10.1017/S014338570600054X. |
[28] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359.
doi: 10.1090/S0002-9939-07-09018-1. |
[29] |
R. Miles and T. Ward, Orbit-counting for nilpotent group shifts,, Proc. Amer. Math. Soc., 137 (2009), 1499.
doi: 10.1090/S0002-9939-08-09649-4. |
[30] |
R. Miles and T. Ward, A dichotomy in orbit growth for commuting automorphisms,, J. Lond. Math. Soc. (2), 81 (2010), 715.
doi: 10.1112/jlms/jdq010. |
[31] |
R. Miles and T. Ward, A directional uniformity of periodic point distribution and mixing,, Discrete Contin. Dyn. Syst., 30 (2011), 1181.
doi: 10.3934/dcds.2011.30.1181. |
[32] |
J. Milnor, On the entropy geometry of cellular automata,, Complex Systems, 2 (1988), 357.
|
[33] |
G. Morris and T. Ward, Entropy bounds for endomorphisms commuting with $K$ actions,, Israel J. Math., 106 (1998), 1.
doi: 10.1007/BF02773458. |
[34] |
M. Pollicott, A note on the growth of periodic points for commuting toral automorphisms,, ISRN Geometry, 2012 (2012).
doi: 10.5402/2012/165808. |
[35] |
K. Schmidt, Dynamical Systems of Algebraic Origin,, Progress in Mathematics, (1995).
doi: 10.1007/978-3-0348-0277-2. |
[36] |
K. Schmidt and T. Ward, Mixing automorphisms of compact groups and a theorem of Schlickewei,, Invent. Math., 111 (1993), 69.
doi: 10.1007/BF01231280. |
[37] |
K. R. Yu, Linear forms in $p$-adic logarithms. II,, Compositio Math., 74 (1990), 15.
|
show all references
References:
[1] |
L. M. Abramov, The entropy of an automorphism of a solenoidal group,, Teor. Veroyatnost. i Primenen, 4 (1959), 249.
|
[2] |
N. Ailon and Z. Rudnick, Torsion points on curves and common divisors of $a^k-1$ and $b^k-1$,, Acta Arith., 113 (2004), 31.
doi: 10.4064/aa113-1-3. |
[3] |
A. Baker, Transcendental Number Theory,, 2nd edition, (1990).
doi: 10.1017/CBO9780511565977. |
[4] |
P. E. Blanksby and H. L. Montgomery, Algebraic integers near the unit circle,, Acta Arith., 18 (1971), 355.
|
[5] |
M. Boyle and D. Lind, Expansive subdynamics,, Trans. Amer. Math. Soc., 349 (1997), 55.
doi: 10.1090/S0002-9947-97-01634-6. |
[6] |
V. Chothi, G. Everest and T. Ward, $S$-integer dynamical systems: Periodic points,, J. Reine Angew. Math., 489 (1997), 99.
doi: 10.1515/crll.1997.489.99. |
[7] |
P. M. Cohn, Algebraic Numbers and Algebraic Functions,, Chapman and Hall Mathematics Series, (1991).
doi: 10.1007/978-1-4899-3444-4. |
[8] |
P. Corvaja and U. Zannier, A lower bound for the height of a rational function at $S$-unit points,, Monatsh. Math., 144 (2005), 203.
doi: 10.1007/s00605-004-0273-0. |
[9] |
E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial,, Acta Arith., 34 (1979), 391.
|
[10] |
M. Einsiedler and D. Lind, Algebraic $\mathbbZ^d$-actions of entropy rank one,, Trans. Amer. Math. Soc., 356 (2004), 1799.
doi: 10.1090/S0002-9947-04-03554-8. |
[11] |
M. Einsiedler, D. Lind, R. Miles and T. Ward, Expansive subdynamics for algebraic $\mathbbZ^d$-actions,, Ergodic Theory Dynam. Systems, 21 (2001), 1695.
doi: 10.1017/S014338570100181X. |
[12] |
G. Everest and T. Ward, Heights of Polynomials and Entropy in Algebraic Dynamics,, Universitext, (1999).
doi: 10.1007/978-1-4471-3898-3. |
[13] |
D. Fried, Entropy for smooth abelian actions,, Proc. Amer. Math. Soc., 87 (1983), 111.
doi: 10.1090/S0002-9939-1983-0677244-7. |
[14] |
S. Friedland, Entropy of graphs, semigroups and groups},, in Ergodic Theory of $Z^d$ Actions (Warwick, (1996), 1993.
doi: 10.1017/CBO9780511662812.013. |
[15] |
W. Geller and M. Pollicott, An entropy for $\mathbb Z^2$-actions with finite entropy generators,, Dedicated to the memory of Wiesław Szlenk, 157 (1998), 209.
|
[16] |
A. Gorodnik and R. Spatzier, Mixing properties of commuting nilmanifold automorphisms,, , (). Google Scholar |
[17] |
A. Katok, S. Katok and F. R. Hertz, The Fried average entropy and slow entropy for actions of higher rank abelian groups,, Geometric and Functional Analysis, 24 (2014), 1204.
doi: 10.1007/s00039-014-0284-5. |
[18] |
B. Kitchens and K. Schmidt, Automorphisms of compact groups,, Ergodic Theory Dynam. Systems, 9 (1989), 691.
doi: 10.1017/S0143385700005290. |
[19] |
F. Ledrappier, Un champ markovien peut être d'entropie nulle et mélangeant,, C. R. Acad. Sci. Paris Sér. A-B, 287 (1978).
|
[20] |
D. Lind, K. Schmidt and T. Ward, Mahler measure and entropy for commuting automorphisms of compact groups,, Invent. Math., 101 (1990), 593.
doi: 10.1007/BF01231517. |
[21] |
D. A. Lind and T. Ward, Automorphisms of solenoids and $p$-adic entropy,, Ergodic Theory Dynam. Systems, 8 (1988), 411.
doi: 10.1017/S0143385700004545. |
[22] |
R. Miles, A natural boundary for the dynamical zeta function for commuting group automorphisms,, Proc. Amer. Math. Soc., 143 (2015), 2927.
doi: 10.1090/S0002-9939-2015-12515-4. |
[23] |
R. Miles, Zeta functions for elements of entropy rank-one actions,, Ergodic Theory Dynam. Systems, 27 (2007), 567.
doi: 10.1017/S0143385706000794. |
[24] |
R. Miles, Finitely represented closed-orbit subdynamics for commuting automorphisms,, Ergodic Theory Dynam. Systems, 30 (2010), 1787.
doi: 10.1017/S0143385709000741. |
[25] |
R. Miles, Synchronization points and associated dynamical invariants,, Trans. Amer. Math. Soc., 365 (2013), 5503.
doi: 10.1090/S0002-9947-2013-05829-1. |
[26] |
R. Miles, M. Staines and T. Ward, Dynamical invariants for group automorphisms,, Contemp. Math., 631 (2015), 231.
doi: 10.1090/conm/631/12606. |
[27] |
R. Miles and T. Ward, Periodic point data detects subdynamics in entropy rank one,, Ergodic Theory Dynam. Systems, 26 (2006), 1913.
doi: 10.1017/S014338570600054X. |
[28] |
R. Miles and T. Ward, Uniform periodic point growth in entropy rank one,, Proc. Amer. Math. Soc., 136 (2008), 359.
doi: 10.1090/S0002-9939-07-09018-1. |
[29] |
R. Miles and T. Ward, Orbit-counting for nilpotent group shifts,, Proc. Amer. Math. Soc., 137 (2009), 1499.
doi: 10.1090/S0002-9939-08-09649-4. |
[30] |
R. Miles and T. Ward, A dichotomy in orbit growth for commuting automorphisms,, J. Lond. Math. Soc. (2), 81 (2010), 715.
doi: 10.1112/jlms/jdq010. |
[31] |
R. Miles and T. Ward, A directional uniformity of periodic point distribution and mixing,, Discrete Contin. Dyn. Syst., 30 (2011), 1181.
doi: 10.3934/dcds.2011.30.1181. |
[32] |
J. Milnor, On the entropy geometry of cellular automata,, Complex Systems, 2 (1988), 357.
|
[33] |
G. Morris and T. Ward, Entropy bounds for endomorphisms commuting with $K$ actions,, Israel J. Math., 106 (1998), 1.
doi: 10.1007/BF02773458. |
[34] |
M. Pollicott, A note on the growth of periodic points for commuting toral automorphisms,, ISRN Geometry, 2012 (2012).
doi: 10.5402/2012/165808. |
[35] |
K. Schmidt, Dynamical Systems of Algebraic Origin,, Progress in Mathematics, (1995).
doi: 10.1007/978-3-0348-0277-2. |
[36] |
K. Schmidt and T. Ward, Mixing automorphisms of compact groups and a theorem of Schlickewei,, Invent. Math., 111 (1993), 69.
doi: 10.1007/BF01231280. |
[37] |
K. R. Yu, Linear forms in $p$-adic logarithms. II,, Compositio Math., 74 (1990), 15.
|
[1] |
Valentin Afraimovich, Maurice Courbage, Lev Glebsky. Directional complexity and entropy for lift mappings. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3385-3401. doi: 10.3934/dcdsb.2015.20.3385 |
[2] |
Marcelo E. de Oliveira, Luiz M. G. Neto. Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences & Engineering, 2016, 13 (2) : 333-341. doi: 10.3934/mbe.2015005 |
[3] |
Richard Miles, Thomas Ward. A directional uniformity of periodic point distribution and mixing. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1181-1189. doi: 10.3934/dcds.2011.30.1181 |
[4] |
Rong Dong, Dongsheng Li, Lihe Wang. Regularity of elliptic systems in divergence form with directional homogenization. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 75-90. doi: 10.3934/dcds.2018004 |
[5] |
Rafael Monteiro. Horizontal patterns from finite speed directional quenching. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3503-3534. doi: 10.3934/dcdsb.2018285 |
[6] |
Rasmus Dalgas Kongskov, Yiqiu Dong. Tomographic reconstruction methods for decomposing directional components. Inverse Problems & Imaging, 2018, 12 (6) : 1429-1442. doi: 10.3934/ipi.2018060 |
[7] |
Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059 |
[8] |
M. D. König, Stefano Battiston, M. Napoletano, F. Schweitzer. On algebraic graph theory and the dynamics of innovation networks. Networks & Heterogeneous Media, 2008, 3 (2) : 201-219. doi: 10.3934/nhm.2008.3.201 |
[9] |
Rongsong Liu, Jiangping Shuai, Jianhong Wu, Huaiping Zhu. Modeling spatial spread of west nile virus and impact of directional dispersal of birds. Mathematical Biosciences & Engineering, 2006, 3 (1) : 145-160. doi: 10.3934/mbe.2006.3.145 |
[10] |
Michael A. Saum, Tim Schulze. The role of processing speed in determining step patterns during directional epitaxy. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 443-457. doi: 10.3934/dcdsb.2009.11.443 |
[11] |
Linlin Su, Thomas Nagylaki. Clines with directional selection and partial panmixia in an unbounded unidimensional habitat. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1697-1741. doi: 10.3934/dcds.2015.35.1697 |
[12] |
Paola Goatin, Matthias Mimault. A mixed system modeling two-directional pedestrian flows. Mathematical Biosciences & Engineering, 2015, 12 (2) : 375-392. doi: 10.3934/mbe.2015.12.375 |
[13] |
Anatole Katok. Fifty years of entropy in dynamics: 1958--2007. Journal of Modern Dynamics, 2007, 1 (4) : 545-596. doi: 10.3934/jmd.2007.1.545 |
[14] |
Fryderyk Falniowski, Marcin Kulczycki, Dominik Kwietniak, Jian Li. Two results on entropy, chaos and independence in symbolic dynamics. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3487-3505. doi: 10.3934/dcdsb.2015.20.3487 |
[15] |
Bernard Host, Alejandro Maass, Servet Martínez. Uniform Bernoulli measure in dynamics of permutative cellular automata with algebraic local rules. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1423-1446. doi: 10.3934/dcds.2003.9.1423 |
[16] |
Haisen Zhang. Clarke directional derivatives of regularized gap functions for nonsmooth quasi-variational inequalities. Mathematical Control & Related Fields, 2014, 4 (3) : 365-379. doi: 10.3934/mcrf.2014.4.365 |
[17] |
Shunfu Jin, Wuyi Yue, Xuena Yan. Performance evaluation of a power saving mechanism in IEEE 802.16 wireless MANs with bi-directional traffic. Journal of Industrial & Management Optimization, 2011, 7 (3) : 717-733. doi: 10.3934/jimo.2011.7.717 |
[18] |
Emile Franc Doungmo Goufo. Multi-directional and saturated chaotic attractors with many scrolls for fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 629-643. doi: 10.3934/dcdss.2020034 |
[19] |
Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122 |
[20] |
Roderick V.N. Melnik, Ningning Song, Per Sandholdt. Dynamics of torque-speed profiles for electric vehicles and nonlinear models based on differential-algebraic equations. Conference Publications, 2003, 2003 (Special) : 610-617. doi: 10.3934/proc.2003.2003.610 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]