March  2015, 20(2): 373-383. doi: 10.3934/dcdsb.2015.20.373

Chaos control in a pendulum system with excitations

1. 

School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, 411201, China, China

2. 

Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

Received  January 2014 Revised  August 2014 Published  January 2015

This paper is devoted to investigate the problem of controlling chaos for a pendulum system with parametric and external excitations. By using Melnikov methods, the criteria of controlling chaos are obtained. Numerical simulations are given to illustrate the effect of the chaos control for this system, suppression of homoclinic chaos is more effective than suppression of heteroclinic chaos, and the chaotic motions can be suppressed to period-motions by adjusting parameters of chaos-suppressing excitation. Finally, we calculate the maximum Lyapunov exponents (LE) in parameter-plane and observe the frequency of chaos-suppressing excitation also play an important role in the process of chaos control.
Citation: Xianwei Chen, Zhujun Jing, Xiangling Fu. Chaos control in a pendulum system with excitations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 373-383. doi: 10.3934/dcdsb.2015.20.373
References:
[1]

A. Alasty and H. Salarieh, Nonlinear feedback control of chaotic pendulum in presence of saturation effect, Chaos, Solitons and Fractals, 31 (2007), 292-304. doi: 10.1016/j.chaos.2005.10.004.

[2]

G. L. Baker, Control of the chaotic driven pendulum, Am. J. Phys., 63 (1995), 832-838. doi: 10.1119/1.17808.

[3]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. of Sound and Vibration, 18 (2006), 1421-1427.

[4]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548. doi: 10.1103/PhysRevLett.66.2545.

[5]

H. J. Cao and G. R. Chen, Global and local control of homoclinic and heteroclinic bifurcation, Int. J. Bifurcat. Chaos, 15 (2005), 2411-2432. doi: 10.1142/S0218127405013393.

[6]

R. Chacón, F. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909.

[7]

R. Chacón, General results on chaos suppression for biharmonically driven dissipative systems, Phys. Lett. A, 257 (1999), 293-300.

[8]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337. doi: 10.1103/PhysRevE.52.2330.

[9]

G. R. Chen, J. Moiola and H. O. Wang, Bifurcation control: Theories, methods and applications, Int. J. Bifurat. Chaos, 10 (2000), 511-548. doi: 10.1142/S0218127400000360.

[10]

G. R. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, 1998.

[11]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift,, Int. J. Bifurcat. Chaos, ().  doi: 10.1142/S0218127412503075.

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, Journal of Sound and Vibration, 172 (1994), 572-576. doi: 10.1006/jsvi.1994.1199.

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196. doi: 10.1016/0375-9601(95)00255-2.

[14]

D. D'Humieres, M. R. Beasley, B. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492. doi: 10.1103/PhysRevA.26.3483.

[15]

X. L. Fu, J. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English Series, 26 (2010), 55-78. doi: 10.1007/s10255-008-8276-6.

[16]

W. Garira and S. R. Bishop, Rotating solutions of parametrically excited pendulum, Journal of Sound and Vibration, 263 (2003), 233-239. doi: 10.1016/S0022-460X(02)01435-9.

[17]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (I), Int. J. Bifurcat. Chaos, 10 (2006), 2887-2902. doi: 10.1142/S0218127406016525.

[18]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (II), Int. J. Bifurcat. Chaos, 10 (2006), 3053-3078. doi: 10.1142/S0218127406016653.

[19]

T. Kapitaniak, Introduction, Chaos, Solitons and Fractals, 15 (2003), 201-203.

[20]

P. S. Landa, Regular and Chaotic Oscillations, Springer-Verlag, 2001.

[21]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations-Controlling and Synchronization, World Scientific, Singapore, 1996. doi: 10.1142/9789812798701.

[22]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos, Solitons and Fractals, 20 (2004), 593-607. doi: 10.1016/j.chaos.2003.08.010.

[23]

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley, New York, 1979.

[24]

E. Ott, N. Grebogi and J. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196-1199. doi: 10.1103/PhysRevLett.64.1196.

[25]

F. H. I. Perira-Pinto, A. M. Ferreira and M. A. Savi, Chaos control in a nonlinear pendulum using a semi-continuous method, Chaos, Solitons and Fractals, 22 (2004), 653-668. doi: 10.1016/j.chaos.2004.02.047.

[26]

S. Rajasekar, Controlling of chaos by weak periodic perturbations in Duffing-van der Pol oscillator, Pramana J. Phys., 41 (1993), 295-309. doi: 10.1007/BF02847395.

[27]

V. Ravichandran, S. Jeyakumari, V. Chinnathambi, S. Rajasekar and M. A. F. Sanjuan, Role of asymmetries in the chaotic dynamics of the double-well Duffing oscillator, Pramana J. Phys., 72 (2009), 927-937.

[28]

T. Shinbrot, E. Ott, N. Grebogi and J. Yorke, Using chaos to direct trajectories to targets, Phys. Rev. Lett., 65 (1990), 3215-3218. doi: 10.1103/PhysRevLett.65.3215.

[29]

M. S. Siewe, C. Tchawoua and S. Rajasekar, Homoclinic bifurcation and chaos in $\Phi^6$-rayleigh oscillator with three wells driven by an amplitude modulated force, Int. J. Bifurcation Chaos, 21 (2011), 1583-1593.

[30]

M. S. Siewe, H. J. Cao and M. A. F. Sanjuan, Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos, Solitons and Fractals, 39 (2009), 1092-1099. doi: 10.1016/j.chaos.2007.05.007.

[31]

M. S. Siewe, H. J. Cao and M. A. F. Sanjuan, On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potentia, Chaos, Solitons and Fractals, 41 (2009), 772-782. doi: 10.1016/j.chaos.2008.03.013.

[32]

D. J. Sudor and S. R. Bishop, Inverted dynamics of a tilted parametric pendulum, European Journal of Mechanics Alsolids, 18 (1996), 517-526. doi: 10.1016/S0997-7538(99)00135-7.

[33]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207. doi: 10.1016/j.chaos.2003.10.011.

[34]

S. Wiggins, Global Bifurcation and Chaos: Analytical Methods, Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1042-9.

[35]

S. Wiggins, On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations, SIAM. J. Appl. Math., 48 (1988), 262-285. doi: 10.1137/0148013.

[36]

K. Yagasaki, Dynamics a pendulum subjected to feedforward and feedback control, JSME. Int. J., 41 (1998), 545-554.

[37]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcat. Chaos, 7 (1997), 2827-2835. doi: 10.1142/S0218127497001904.

[38]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737. doi: 10.1016/j.chaos.2006.05.065.

show all references

References:
[1]

A. Alasty and H. Salarieh, Nonlinear feedback control of chaotic pendulum in presence of saturation effect, Chaos, Solitons and Fractals, 31 (2007), 292-304. doi: 10.1016/j.chaos.2005.10.004.

[2]

G. L. Baker, Control of the chaotic driven pendulum, Am. J. Phys., 63 (1995), 832-838. doi: 10.1119/1.17808.

[3]

S. R. Bishop and M. J. Clifford, Zones of chaotic behavior in the parametrically exicited pendulum, J. of Sound and Vibration, 18 (2006), 1421-1427.

[4]

Y. Braiman and I. Goldhirsch, Taming chaotic dynamics with weak periodic perturbation, Phys. Rev. Lett., 66 (1991), 2545-2548. doi: 10.1103/PhysRevLett.66.2545.

[5]

H. J. Cao and G. R. Chen, Global and local control of homoclinic and heteroclinic bifurcation, Int. J. Bifurcat. Chaos, 15 (2005), 2411-2432. doi: 10.1142/S0218127405013393.

[6]

R. Chacón, F. Palmero and F. Balibrea, Taming chaos in a driven Josephson junction, Int. J. Bifurcat. Chaos, 11 (2001), 1897-1909.

[7]

R. Chacón, General results on chaos suppression for biharmonically driven dissipative systems, Phys. Lett. A, 257 (1999), 293-300.

[8]

R. Chacón, Natural symmetries and regularization by means of weak parametric modulations in the forced pendulum, Phys. Rev. E, 52 (1995), 2330-2337. doi: 10.1103/PhysRevE.52.2330.

[9]

G. R. Chen, J. Moiola and H. O. Wang, Bifurcation control: Theories, methods and applications, Int. J. Bifurat. Chaos, 10 (2000), 511-548. doi: 10.1142/S0218127400000360.

[10]

G. R. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications, World Scientific, 1998.

[11]

X. W. Chen and Z. J. Jing, Complex dynamics in a pendulum equation with a phase shift,, Int. J. Bifurcat. Chaos, ().  doi: 10.1142/S0218127412503075.

[12]

M. J. Clifford and S. R. Bishop, Approximating the escape zone for the parametrically excited pendulum, Journal of Sound and Vibration, 172 (1994), 572-576. doi: 10.1006/jsvi.1994.1199.

[13]

M. J. Clifford and S. R. Bishop, Rotating periodic orbits of parametrically excited pendulum, Phys. Lett. A, 201 (1995), 191-196. doi: 10.1016/0375-9601(95)00255-2.

[14]

D. D'Humieres, M. R. Beasley, B. A. Huberman and A. F. Libchaber, Chaotic states and routes to chaos in the forced pendulum, Phys. Rev. A, 26 (1982), 3483-3492. doi: 10.1103/PhysRevA.26.3483.

[15]

X. L. Fu, J. Deng and Z. J. Jing, Complex dynamics in physical pendulum equation with suspension axis vibrations, Acta Mathematica Applicatae Sinica, English Series, 26 (2010), 55-78. doi: 10.1007/s10255-008-8276-6.

[16]

W. Garira and S. R. Bishop, Rotating solutions of parametrically excited pendulum, Journal of Sound and Vibration, 263 (2003), 233-239. doi: 10.1016/S0022-460X(02)01435-9.

[17]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (I), Int. J. Bifurcat. Chaos, 10 (2006), 2887-2902. doi: 10.1142/S0218127406016525.

[18]

Z. J. Jing and J. P. Yang, Complex dynamics in pendulum equation with parametric and external excitations (II), Int. J. Bifurcat. Chaos, 10 (2006), 3053-3078. doi: 10.1142/S0218127406016653.

[19]

T. Kapitaniak, Introduction, Chaos, Solitons and Fractals, 15 (2003), 201-203.

[20]

P. S. Landa, Regular and Chaotic Oscillations, Springer-Verlag, 2001.

[21]

M. Lakshman and K. Murall, Chaos in Nonlinear Oscillations-Controlling and Synchronization, World Scientific, Singapore, 1996. doi: 10.1142/9789812798701.

[22]

Z. H. Liu and W. Q. Zhu, Homoclinic bifurcation and chaos in simple pendulum under bounded noise excitation, Chaos, Solitons and Fractals, 20 (2004), 593-607. doi: 10.1016/j.chaos.2003.08.010.

[23]

A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations, John Wiley, New York, 1979.

[24]

E. Ott, N. Grebogi and J. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990), 1196-1199. doi: 10.1103/PhysRevLett.64.1196.

[25]

F. H. I. Perira-Pinto, A. M. Ferreira and M. A. Savi, Chaos control in a nonlinear pendulum using a semi-continuous method, Chaos, Solitons and Fractals, 22 (2004), 653-668. doi: 10.1016/j.chaos.2004.02.047.

[26]

S. Rajasekar, Controlling of chaos by weak periodic perturbations in Duffing-van der Pol oscillator, Pramana J. Phys., 41 (1993), 295-309. doi: 10.1007/BF02847395.

[27]

V. Ravichandran, S. Jeyakumari, V. Chinnathambi, S. Rajasekar and M. A. F. Sanjuan, Role of asymmetries in the chaotic dynamics of the double-well Duffing oscillator, Pramana J. Phys., 72 (2009), 927-937.

[28]

T. Shinbrot, E. Ott, N. Grebogi and J. Yorke, Using chaos to direct trajectories to targets, Phys. Rev. Lett., 65 (1990), 3215-3218. doi: 10.1103/PhysRevLett.65.3215.

[29]

M. S. Siewe, C. Tchawoua and S. Rajasekar, Homoclinic bifurcation and chaos in $\Phi^6$-rayleigh oscillator with three wells driven by an amplitude modulated force, Int. J. Bifurcation Chaos, 21 (2011), 1583-1593.

[30]

M. S. Siewe, H. J. Cao and M. A. F. Sanjuan, Effect of nonlinear dissipation on the basin boundaries of a driven two-well Rayleigh-Duffing oscillator, Chaos, Solitons and Fractals, 39 (2009), 1092-1099. doi: 10.1016/j.chaos.2007.05.007.

[31]

M. S. Siewe, H. J. Cao and M. A. F. Sanjuan, On the occurrence of chaos in a parametrically driven extended Rayleigh oscillator with three-well potentia, Chaos, Solitons and Fractals, 41 (2009), 772-782. doi: 10.1016/j.chaos.2008.03.013.

[32]

D. J. Sudor and S. R. Bishop, Inverted dynamics of a tilted parametric pendulum, European Journal of Mechanics Alsolids, 18 (1996), 517-526. doi: 10.1016/S0997-7538(99)00135-7.

[33]

R. Q. Wang and Z. J. Jing, Chaos control of chaotic pendulum system, Chaos, Solitons and Fractals, 21 (2004), 201-207. doi: 10.1016/j.chaos.2003.10.011.

[34]

S. Wiggins, Global Bifurcation and Chaos: Analytical Methods, Springer-Verlag, 1988. doi: 10.1007/978-1-4612-1042-9.

[35]

S. Wiggins, On the detection and dynamical consequences of orbits homoclinic to hyperbolic periodic orbits and normally hyperbolic invariant tori in a class of ordinary differential equations, SIAM. J. Appl. Math., 48 (1988), 262-285. doi: 10.1137/0148013.

[36]

K. Yagasaki, Dynamics a pendulum subjected to feedforward and feedback control, JSME. Int. J., 41 (1998), 545-554.

[37]

K. Yagasaki and T. Uozumi, Controlling chaos in a pendulum subjected to feedforward and feedback control, Int. J. Bifurcat. Chaos, 7 (1997), 2827-2835. doi: 10.1142/S0218127497001904.

[38]

J. P. Yang and Z. J. Jing, Inhibition of chaos in a pendulum equation, Chaos, Solitons and Fractals, 35 (2008), 726-737. doi: 10.1016/j.chaos.2006.05.065.

[1]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[2]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[3]

J. Alberto Conejero, Francisco Rodenas, Macarena Trujillo. Chaos for the Hyperbolic Bioheat Equation. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 653-668. doi: 10.3934/dcds.2015.35.653

[4]

Carolina Mendoza, Jean Bragard, Pier Luigi Ramazza, Javier Martínez-Mardones, Stefano Boccaletti. Pinning control of spatiotemporal chaos in the LCLV device. Mathematical Biosciences & Engineering, 2007, 4 (3) : 523-530. doi: 10.3934/mbe.2007.4.523

[5]

Feng Wang, Jifeng Chu, Zaitao Liang. Prevalence of stable periodic solutions in the forced relativistic pendulum equation. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4579-4594. doi: 10.3934/dcdsb.2018177

[6]

Maoan Han, Tonghua Zhang. Some bifurcation methods of finding limit cycles. Mathematical Biosciences & Engineering, 2006, 3 (1) : 67-77. doi: 10.3934/mbe.2006.3.67

[7]

S. Jiménez, Pedro J. Zufiria. Characterizing chaos in a type of fractional Duffing's equation. Conference Publications, 2015, 2015 (special) : 660-669. doi: 10.3934/proc.2015.0660

[8]

Valentin Duruisseaux, Antony R. Humphries. Bistability, bifurcations and chaos in the Mackey-Glass equation. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022009

[9]

Yubai Liu, Xueshan Gao, Fuquan Dai. Implementation of Mamdami fuzzy control on a multi-DOF two-wheel inverted pendulum robot. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1251-1266. doi: 10.3934/dcdss.2015.8.1251

[10]

Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1

[11]

Fatihcan M. Atay. Delayed feedback control near Hopf bifurcation. Discrete and Continuous Dynamical Systems - S, 2008, 1 (2) : 197-205. doi: 10.3934/dcdss.2008.1.197

[12]

Gunog Seo, Gail S. K. Wolkowicz. Pest control by generalist parasitoids: A bifurcation theory approach. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3157-3187. doi: 10.3934/dcdss.2020163

[13]

Dale McDonald. Sensitivity based trajectory following control damping methods. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 127-143. doi: 10.3934/naco.2013.3.127

[14]

Rafael Labarca, Solange Aranzubia. A formula for the boundary of chaos in the lexicographical scenario and applications to the bifurcation diagram of the standard two parameter family of quadratic increasing-increasing Lorenz maps. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1745-1776. doi: 10.3934/dcds.2018072

[15]

Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139

[16]

Rubén Capeáns, Juan Sabuco, Miguel A. F. Sanjuán. Partial control of chaos: How to avoid undesirable behaviors with small controls in presence of noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3237-3274. doi: 10.3934/dcdsb.2018241

[17]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations and Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[18]

Jean-Philippe Lessard, Evelyn Sander, Thomas Wanner. Rigorous continuation of bifurcation points in the diblock copolymer equation. Journal of Computational Dynamics, 2017, 4 (1&2) : 71-118. doi: 10.3934/jcd.2017003

[19]

Jongmin Han, Masoud Yari. Dynamic bifurcation of the complex Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 875-891. doi: 10.3934/dcdsb.2009.11.875

[20]

Jean-François Rault. A bifurcation for a generalized Burgers' equation in dimension one. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 683-706. doi: 10.3934/dcdss.2012.5.683

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]