March  2015, 20(2): 385-395. doi: 10.3934/dcdsb.2015.20.385

Asymptotic behavior for a reaction-diffusion population model with delay

1. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010

2. 

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, United States

Received  May 2014 Revised  August 2014 Published  January 2015

In this paper, we study a reaction-diffusion population model with time delay. We establish a comparison principle for coupled upper/lower solutions and prove the existence/uniqueness result for the model. We then show the global asymptotic behavior of the model.
Citation: Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385
References:
[1]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays,, J. Differential Equations, 232 (2007), 104.  doi: 10.1016/j.jde.2006.08.015.  Google Scholar

[2]

M. V. Bartuccelli and S. A. Gourley, A Population model with time-dependent delay,, Math. Comput. Modelling, 26 (1997), 13.  doi: 10.1016/S0895-7177(97)00237-9.  Google Scholar

[3]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[4]

K. Deng, On a nonlocal reaction-diffusion population model,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 65.  doi: 10.3934/dcdsb.2008.9.65.  Google Scholar

[5]

S. A. Gourley and N. F. Briton, On a modified Volterra population equation with diffusion,, Nonlinear Anal., 21 (1993), 389.  doi: 10.1016/0362-546X(93)90082-4.  Google Scholar

[6]

Y. Kyrychko, S. A. Gourley and M. V. Bartuccelli, Comparison and convergence to equlibrium in a nonlocal delayed reaction-diffusion model on an infinite domain,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1015.  doi: 10.3934/dcdsb.2005.5.1015.  Google Scholar

[7]

R. Laister, Global asymptotic behavior in some functional parabolic equations,, Nonlinear Anal., 50 (2002), 347.  doi: 10.1016/S0362-546X(01)00766-0.  Google Scholar

[8]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103.  doi: 10.1137/050638011.  Google Scholar

[9]

M. Protter and H. Weinberger, Maximum Priciples in Differential Equations,, Prentice-Hall Inc, (1967).   Google Scholar

[10]

R. Redlinger, Existence theorems for semilinear parabolic systems with functionals,, Nonlinear Anal., 8 (1984), 667.  doi: 10.1016/0362-546X(84)90011-7.  Google Scholar

[11]

R. Redlinger, On Volterra's population equation with diffusion,, SIAM J. Math. Anal., 16 (1985), 135.  doi: 10.1137/0516008.  Google Scholar

[12]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh. Ser. A, 134 (2004), 991.  doi: 10.1017/S0308210500003590.  Google Scholar

[13]

A. Schiaffino, On a diffusion Volterra equation,, Nonlinear Anal., 3 (1979), 595.  doi: 10.1016/0362-546X(79)90088-9.  Google Scholar

[14]

Z-C. Wang, W-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[15]

J. Wu and X-Q. Zhao, Permanence and convergence in multi-species competition systems with delay,, Trans. Amer. Math. Soc., 126 (1998), 1709.  doi: 10.1090/S0002-9939-98-04522-5.  Google Scholar

show all references

References:
[1]

S. Ai, Traveling wave fronts for generalized Fisher equations with spatio-temporal delays,, J. Differential Equations, 232 (2007), 104.  doi: 10.1016/j.jde.2006.08.015.  Google Scholar

[2]

M. V. Bartuccelli and S. A. Gourley, A Population model with time-dependent delay,, Math. Comput. Modelling, 26 (1997), 13.  doi: 10.1016/S0895-7177(97)00237-9.  Google Scholar

[3]

N. F. Britton, Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model,, SIAM J. Appl. Math., 50 (1990), 1663.  doi: 10.1137/0150099.  Google Scholar

[4]

K. Deng, On a nonlocal reaction-diffusion population model,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 65.  doi: 10.3934/dcdsb.2008.9.65.  Google Scholar

[5]

S. A. Gourley and N. F. Briton, On a modified Volterra population equation with diffusion,, Nonlinear Anal., 21 (1993), 389.  doi: 10.1016/0362-546X(93)90082-4.  Google Scholar

[6]

Y. Kyrychko, S. A. Gourley and M. V. Bartuccelli, Comparison and convergence to equlibrium in a nonlocal delayed reaction-diffusion model on an infinite domain,, Discrete Contin. Dyn. Syst. Ser. B, 5 (2005), 1015.  doi: 10.3934/dcdsb.2005.5.1015.  Google Scholar

[7]

R. Laister, Global asymptotic behavior in some functional parabolic equations,, Nonlinear Anal., 50 (2002), 347.  doi: 10.1016/S0362-546X(01)00766-0.  Google Scholar

[8]

C. Ou and J. Wu, Traveling wavefronts in a delayed food-limited population model,, SIAM J. Math. Anal., 39 (2007), 103.  doi: 10.1137/050638011.  Google Scholar

[9]

M. Protter and H. Weinberger, Maximum Priciples in Differential Equations,, Prentice-Hall Inc, (1967).   Google Scholar

[10]

R. Redlinger, Existence theorems for semilinear parabolic systems with functionals,, Nonlinear Anal., 8 (1984), 667.  doi: 10.1016/0362-546X(84)90011-7.  Google Scholar

[11]

R. Redlinger, On Volterra's population equation with diffusion,, SIAM J. Math. Anal., 16 (1985), 135.  doi: 10.1137/0516008.  Google Scholar

[12]

S. Ruan and D. Xiao, Stability of steady states and existence of travelling waves in a vector-disease model,, Proc. Royal Soc. Edinburgh. Ser. A, 134 (2004), 991.  doi: 10.1017/S0308210500003590.  Google Scholar

[13]

A. Schiaffino, On a diffusion Volterra equation,, Nonlinear Anal., 3 (1979), 595.  doi: 10.1016/0362-546X(79)90088-9.  Google Scholar

[14]

Z-C. Wang, W-T. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[15]

J. Wu and X-Q. Zhao, Permanence and convergence in multi-species competition systems with delay,, Trans. Amer. Math. Soc., 126 (1998), 1709.  doi: 10.1090/S0002-9939-98-04522-5.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[3]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[4]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[5]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[6]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[7]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[8]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[9]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[10]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[11]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[12]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[13]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[14]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[15]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[16]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[19]

Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263

[20]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]