January  2015, 20(1): 39-58. doi: 10.3934/dcdsb.2015.20.39

Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc

1. 

Université Montpellier 2, CC 051, 34095 Montpellier cedex 5, France, France

2. 

Inria 'BIOCORE' team, Inria Sophia-Antipolis, route des Lucioles, 06902 Sophia-Antipolis, France

Received  November 2013 Revised  July 2014 Published  November 2014

We study a minimal time control problem under the presence of a saturation point on the singular locus. The system describes a fed-batch reactor with one species and one substrate. Our aim is to find an optimal feedback control steering the system to a given target in minimal time. The growth function is of Haldane type implying the existence of a singular arc which is non-necessary admissible everywhere (i.e. the singular control can take values outside the admissible control set). Thanks to Pontrygin's Principle, we provide an optimal synthesis of the problem that exhibits a frame point at the intersection of the singular arc and a switching curve. Numerical simulations allow to compute this curve and the frame point.
Citation: Térence Bayen, Marc Mazade, Francis Mairet. Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 39-58. doi: 10.3934/dcdsb.2015.20.39
References:
[1]

T. Bayen, P. Gajardo and F. Mairet, Optimal synthesis for the minimal time control problems of fed-batch processes for growth functions with two maxima,, J. Optim. Theory and Applications, 158 (2013), 521.  doi: 10.1007/s10957-012-0225-0.  Google Scholar

[2]

T. Bayen and F. Mairet, Minimal time control of fed-batch bioreactor with product inhibition,, Bioprocess and Biosystems Engineering, 36 (2013), 1485.   Google Scholar

[3]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. Calc. Var., 13 (2007), 207.  doi: 10.1051/cocv:2007012.  Google Scholar

[4]

B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory,, Vol. 40, (2003).   Google Scholar

[5]

B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: The generic case,, IEEE Trans. Automat. Contr., 54 (2009), 2598.  doi: 10.1109/TAC.2009.2031212.  Google Scholar

[6]

B. Bonnard, J.-P. Gauthier and J. de Morant, Geometric time-optimal control for batch reactors,, in Analysis of Controlled Dynamical Systems (eds. B. Bonnard, (1991), 69.  doi: 10.1109/CDC.1991.261646.  Google Scholar

[7]

B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors,, SIAM J. on Control and Opt., 33 (1995), 1279.  doi: 10.1137/S0363012992241338.  Google Scholar

[8]

U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds,, Vol. 43, (2004).   Google Scholar

[9]

U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems,, Journal of Dynamical and Control Systems, 7 (2001), 209.  doi: 10.1023/A:1013003204923.  Google Scholar

[10]

A. Bressan and B. Piccoli, A generic classification of time optimal planar stabilizing feedbacks,, SIAM J. on Control and Optimization, 36 (1998), 12.  doi: 10.1137/S0363012995291117.  Google Scholar

[11]

Jr. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control,, Hemisphere Publishing Corp., (1975).   Google Scholar

[12]

D. Dochain and A. Rapaport, Minimal time control of fed-batch processes with growth functions having several maxima,, IEEE Trans. Automat. Contr., 56 (2011), 2671.  doi: 10.1109/TAC.2011.2159424.  Google Scholar

[13]

D. Dochain and P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment Processes,, IWA Publishing, (2001).   Google Scholar

[14]

P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species,, SIAM J. Control Optim., 47 (2008), 2827.  doi: 10.1137/070695204.  Google Scholar

[15]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. on Control and Optimization, 46 (2007), 1052.  doi: 10.1137/060665294.  Google Scholar

[16]

J. Lee, S. Y. Lee, S. Park and A. P. J. Middelberg, Control of fed-batch fermentations,, Biotechnology Advances, 17 (1999), 29.  doi: 10.1016/S0734-9750(98)00015-9.  Google Scholar

[17]

A. Miele, Application of Green's theorem to the extremization of linear integrals,, in Symp. on Vehicle Systems Optimization, (1961).   Google Scholar

[18]

J. Monod, Recherches sur la Croissance des Cultures Bactériennes,, Hermann, (1942).   Google Scholar

[19]

J. A. Moreno, Optimal time control of bioreactors for the wastewater treatment,, Optim. Control Appl. Meth., 20 (1999), 145.  doi: {10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J}.  Google Scholar

[20]

B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis,, SIAM J. on Control and Optimization, 34 (1996), 1914.  doi: 10.1137/S0363012993256149.  Google Scholar

[21]

B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality,, SIAM J. on Control and Optimization, 39 (2000), 359.  doi: 10.1137/S0363012999322031.  Google Scholar

[22]

L. Pontryagin, V. Boltyanski, R. Gamkrelidze and E. Michtchenko, The Mathematical Theory of Optimal Processes,, Wiley Interscience, (1962).   Google Scholar

[23]

H. Schattler and M. Jankovic, A synthesis of time-optimal controls in the presence of saturated singular arcs,, Forum Mathematicum, 5 (1993), 203.  doi: 10.1515/form.1993.5.203.  Google Scholar

[24]

H. Schattler and U. Ledzewicz, Geometric Optimal Control,, Springer, (2012).  doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[25]

C. J. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems,, IEEE Trans. Automat. Control, 55 (2010), 2488.  doi: 10.1109/TAC.2010.2047742.  Google Scholar

[26]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[27]

P. Spinelli and G. Solay Rakotonirayni, Minimum time problem synthesis,, Systems and Control Letters, 10 (1988), 281.  doi: 10.1016/0167-6911(88)90018-7.  Google Scholar

[28]

H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The $C^{\infty}$ nonsingular case,, SIAM J. on Control and Optimization, 25 (1987), 433.  doi: 10.1137/0325025.  Google Scholar

[29]

H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The general real analytic case,, SIAM J. on Control and Optimization, 25 (1987), 868.  doi: 10.1137/0325048.  Google Scholar

[30]

H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane,, SIAM J. on Control and Optimization, 25 (1987), 1145.  doi: 10.1137/0325062.  Google Scholar

show all references

References:
[1]

T. Bayen, P. Gajardo and F. Mairet, Optimal synthesis for the minimal time control problems of fed-batch processes for growth functions with two maxima,, J. Optim. Theory and Applications, 158 (2013), 521.  doi: 10.1007/s10957-012-0225-0.  Google Scholar

[2]

T. Bayen and F. Mairet, Minimal time control of fed-batch bioreactor with product inhibition,, Bioprocess and Biosystems Engineering, 36 (2013), 1485.   Google Scholar

[3]

B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control,, ESAIM Control Optim. Calc. Var., 13 (2007), 207.  doi: 10.1051/cocv:2007012.  Google Scholar

[4]

B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory,, Vol. 40, (2003).   Google Scholar

[5]

B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: The generic case,, IEEE Trans. Automat. Contr., 54 (2009), 2598.  doi: 10.1109/TAC.2009.2031212.  Google Scholar

[6]

B. Bonnard, J.-P. Gauthier and J. de Morant, Geometric time-optimal control for batch reactors,, in Analysis of Controlled Dynamical Systems (eds. B. Bonnard, (1991), 69.  doi: 10.1109/CDC.1991.261646.  Google Scholar

[7]

B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors,, SIAM J. on Control and Opt., 33 (1995), 1279.  doi: 10.1137/S0363012992241338.  Google Scholar

[8]

U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds,, Vol. 43, (2004).   Google Scholar

[9]

U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems,, Journal of Dynamical and Control Systems, 7 (2001), 209.  doi: 10.1023/A:1013003204923.  Google Scholar

[10]

A. Bressan and B. Piccoli, A generic classification of time optimal planar stabilizing feedbacks,, SIAM J. on Control and Optimization, 36 (1998), 12.  doi: 10.1137/S0363012995291117.  Google Scholar

[11]

Jr. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control,, Hemisphere Publishing Corp., (1975).   Google Scholar

[12]

D. Dochain and A. Rapaport, Minimal time control of fed-batch processes with growth functions having several maxima,, IEEE Trans. Automat. Contr., 56 (2011), 2671.  doi: 10.1109/TAC.2011.2159424.  Google Scholar

[13]

D. Dochain and P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment Processes,, IWA Publishing, (2001).   Google Scholar

[14]

P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species,, SIAM J. Control Optim., 47 (2008), 2827.  doi: 10.1137/070695204.  Google Scholar

[15]

U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem,, SIAM J. on Control and Optimization, 46 (2007), 1052.  doi: 10.1137/060665294.  Google Scholar

[16]

J. Lee, S. Y. Lee, S. Park and A. P. J. Middelberg, Control of fed-batch fermentations,, Biotechnology Advances, 17 (1999), 29.  doi: 10.1016/S0734-9750(98)00015-9.  Google Scholar

[17]

A. Miele, Application of Green's theorem to the extremization of linear integrals,, in Symp. on Vehicle Systems Optimization, (1961).   Google Scholar

[18]

J. Monod, Recherches sur la Croissance des Cultures Bactériennes,, Hermann, (1942).   Google Scholar

[19]

J. A. Moreno, Optimal time control of bioreactors for the wastewater treatment,, Optim. Control Appl. Meth., 20 (1999), 145.  doi: {10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J}.  Google Scholar

[20]

B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis,, SIAM J. on Control and Optimization, 34 (1996), 1914.  doi: 10.1137/S0363012993256149.  Google Scholar

[21]

B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality,, SIAM J. on Control and Optimization, 39 (2000), 359.  doi: 10.1137/S0363012999322031.  Google Scholar

[22]

L. Pontryagin, V. Boltyanski, R. Gamkrelidze and E. Michtchenko, The Mathematical Theory of Optimal Processes,, Wiley Interscience, (1962).   Google Scholar

[23]

H. Schattler and M. Jankovic, A synthesis of time-optimal controls in the presence of saturated singular arcs,, Forum Mathematicum, 5 (1993), 203.  doi: 10.1515/form.1993.5.203.  Google Scholar

[24]

H. Schattler and U. Ledzewicz, Geometric Optimal Control,, Springer, (2012).  doi: 10.1007/978-1-4614-3834-2.  Google Scholar

[25]

C. J. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems,, IEEE Trans. Automat. Control, 55 (2010), 2488.  doi: 10.1109/TAC.2010.2047742.  Google Scholar

[26]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[27]

P. Spinelli and G. Solay Rakotonirayni, Minimum time problem synthesis,, Systems and Control Letters, 10 (1988), 281.  doi: 10.1016/0167-6911(88)90018-7.  Google Scholar

[28]

H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The $C^{\infty}$ nonsingular case,, SIAM J. on Control and Optimization, 25 (1987), 433.  doi: 10.1137/0325025.  Google Scholar

[29]

H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The general real analytic case,, SIAM J. on Control and Optimization, 25 (1987), 868.  doi: 10.1137/0325048.  Google Scholar

[30]

H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane,, SIAM J. on Control and Optimization, 25 (1987), 1145.  doi: 10.1137/0325062.  Google Scholar

[1]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[2]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[5]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[6]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[7]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[8]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[11]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[12]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[13]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[14]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[15]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[16]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[17]

Sergio Conti, Georg Dolzmann. Optimal laminates in single-slip elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 1-16. doi: 10.3934/dcdss.2020302

[18]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[19]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]