\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc

Abstract Related Papers Cited by
  • We study a minimal time control problem under the presence of a saturation point on the singular locus. The system describes a fed-batch reactor with one species and one substrate. Our aim is to find an optimal feedback control steering the system to a given target in minimal time. The growth function is of Haldane type implying the existence of a singular arc which is non-necessary admissible everywhere (i.e. the singular control can take values outside the admissible control set). Thanks to Pontrygin's Principle, we provide an optimal synthesis of the problem that exhibits a frame point at the intersection of the singular arc and a switching curve. Numerical simulations allow to compute this curve and the frame point.
    Mathematics Subject Classification: Primary: 49J15, 49K15, 92B05; Secondary: 93C95.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    T. Bayen, P. Gajardo and F. Mairet, Optimal synthesis for the minimal time control problems of fed-batch processes for growth functions with two maxima, J. Optim. Theory and Applications, 158 (2013), 521-553.doi: 10.1007/s10957-012-0225-0.

    [2]

    T. Bayen and F. Mairet, Minimal time control of fed-batch bioreactor with product inhibition, Bioprocess and Biosystems Engineering, 36 (2013), 1485-1496.

    [3]

    B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. Calc. Var., 13 (2007), 207-236.doi: 10.1051/cocv:2007012.

    [4]

    B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Vol. 40, Springer-Verlag, Berlin, 2003.

    [5]

    B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: The generic case, IEEE Trans. Automat. Contr., 54 (2009), 2598-2610.doi: 10.1109/TAC.2009.2031212.

    [6]

    B. Bonnard, J.-P. Gauthier and J. de Morant, Geometric time-optimal control for batch reactors, in Analysis of Controlled Dynamical Systems (eds. B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka), Birkhäuser, 1991, 69-87.doi: 10.1109/CDC.1991.261646.

    [7]

    B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. on Control and Opt., 33 (1995), 1279-1311.doi: 10.1137/S0363012992241338.

    [8]

    U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Vol. 43, Springer-Verlag, Berlin, 2004.

    [9]

    U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems, Journal of Dynamical and Control Systems, 7 (2001), 209-258.doi: 10.1023/A:1013003204923.

    [10]

    A. Bressan and B. Piccoli, A generic classification of time optimal planar stabilizing feedbacks, SIAM J. on Control and Optimization, 36 (1998), 12-32.doi: 10.1137/S0363012995291117.

    [11]

    Jr. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control, Hemisphere Publishing Corp., Washington, D. C., 1975.

    [12]

    D. Dochain and A. Rapaport, Minimal time control of fed-batch processes with growth functions having several maxima, IEEE Trans. Automat. Contr., 56 (2011), 2671-2676.doi: 10.1109/TAC.2011.2159424.

    [13]

    D. Dochain and P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment Processes, IWA Publishing, U.K., 2001.

    [14]

    P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species, SIAM J. Control Optim., 47 (2008), 2827-2856.doi: 10.1137/070695204.

    [15]

    U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.doi: 10.1137/060665294.

    [16]

    J. Lee, S. Y. Lee, S. Park and A. P. J. Middelberg, Control of fed-batch fermentations, Biotechnology Advances, 17 (1999), 29-48.doi: 10.1016/S0734-9750(98)00015-9.

    [17]

    A. Miele, Application of Green's theorem to the extremization of linear integrals, in Symp. on Vehicle Systems Optimization, Garden City, New York, 1961.

    [18]

    J. Monod, Recherches sur la Croissance des Cultures Bactériennes, Hermann, Paris, 1942.

    [19]

    J. A. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optim. Control Appl. Meth., 20 (1999), 145-164.doi: {10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J}.

    [20]

    B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis, SIAM J. on Control and Optimization, 34 (1996), 1914-1946.doi: 10.1137/S0363012993256149.

    [21]

    B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality, SIAM J. on Control and Optimization, 39 (2000), 359-410.doi: 10.1137/S0363012999322031.

    [22]

    L. Pontryagin, V. Boltyanski, R. Gamkrelidze and E. Michtchenko, The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962.

    [23]

    H. Schattler and M. Jankovic, A synthesis of time-optimal controls in the presence of saturated singular arcs, Forum Mathematicum, 5 (1993), 203-241.doi: 10.1515/form.1993.5.203.

    [24]

    H. Schattler and U. Ledzewicz, Geometric Optimal Control, Springer, New York, 2012.doi: 10.1007/978-1-4614-3834-2.

    [25]

    C. J. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems, IEEE Trans. Automat. Control, 55 (2010), 2488-2499.doi: 10.1109/TAC.2010.2047742.

    [26]

    H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043.

    [27]

    P. Spinelli and G. Solay Rakotonirayni, Minimum time problem synthesis, Systems and Control Letters, 10 (1988), 281-290.doi: 10.1016/0167-6911(88)90018-7.

    [28]

    H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The $C^{\infty}$ nonsingular case, SIAM J. on Control and Optimization, 25 (1987), 433-465.doi: 10.1137/0325025.

    [29]

    H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The general real analytic case, SIAM J. on Control and Optimization, 25 (1987), 868-904.doi: 10.1137/0325048.

    [30]

    H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. on Control and Optimization, 25 (1987), 1145-1162.doi: 10.1137/0325062.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return