-
Previous Article
Remarks on global attractors for the 3D Navier--Stokes equations with horizontal filtering
- DCDS-B Home
- This Issue
-
Next Article
An Euler scheme for stochastic delay differential equations on unbounded domains: Pathwise convergence
Analysis of an optimal control problem connected to bioprocesses involving a saturated singular arc
1. | Université Montpellier 2, CC 051, 34095 Montpellier cedex 5, France, France |
2. | Inria 'BIOCORE' team, Inria Sophia-Antipolis, route des Lucioles, 06902 Sophia-Antipolis, France |
References:
[1] |
T. Bayen, P. Gajardo and F. Mairet, Optimal synthesis for the minimal time control problems of fed-batch processes for growth functions with two maxima, J. Optim. Theory and Applications, 158 (2013), 521-553.
doi: 10.1007/s10957-012-0225-0. |
[2] |
T. Bayen and F. Mairet, Minimal time control of fed-batch bioreactor with product inhibition, Bioprocess and Biosystems Engineering, 36 (2013), 1485-1496. |
[3] |
B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. Calc. Var., 13 (2007), 207-236.
doi: 10.1051/cocv:2007012. |
[4] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Vol. 40, Springer-Verlag, Berlin, 2003. |
[5] |
B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: The generic case, IEEE Trans. Automat. Contr., 54 (2009), 2598-2610.
doi: 10.1109/TAC.2009.2031212. |
[6] |
B. Bonnard, J.-P. Gauthier and J. de Morant, Geometric time-optimal control for batch reactors, in Analysis of Controlled Dynamical Systems (eds. B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka), Birkhäuser, 1991, 69-87.
doi: 10.1109/CDC.1991.261646. |
[7] |
B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. on Control and Opt., 33 (1995), 1279-1311.
doi: 10.1137/S0363012992241338. |
[8] |
U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Vol. 43, Springer-Verlag, Berlin, 2004. |
[9] |
U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems, Journal of Dynamical and Control Systems, 7 (2001), 209-258.
doi: 10.1023/A:1013003204923. |
[10] |
A. Bressan and B. Piccoli, A generic classification of time optimal planar stabilizing feedbacks, SIAM J. on Control and Optimization, 36 (1998), 12-32.
doi: 10.1137/S0363012995291117. |
[11] |
Jr. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control, Hemisphere Publishing Corp., Washington, D. C., 1975. |
[12] |
D. Dochain and A. Rapaport, Minimal time control of fed-batch processes with growth functions having several maxima, IEEE Trans. Automat. Contr., 56 (2011), 2671-2676.
doi: 10.1109/TAC.2011.2159424. |
[13] |
D. Dochain and P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment Processes, IWA Publishing, U.K., 2001. |
[14] |
P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species, SIAM J. Control Optim., 47 (2008), 2827-2856.
doi: 10.1137/070695204. |
[15] |
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
doi: 10.1137/060665294. |
[16] |
J. Lee, S. Y. Lee, S. Park and A. P. J. Middelberg, Control of fed-batch fermentations, Biotechnology Advances, 17 (1999), 29-48.
doi: 10.1016/S0734-9750(98)00015-9. |
[17] |
A. Miele, Application of Green's theorem to the extremization of linear integrals, in Symp. on Vehicle Systems Optimization, Garden City, New York, 1961. |
[18] |
J. Monod, Recherches sur la Croissance des Cultures Bactériennes, Hermann, Paris, 1942. |
[19] |
J. A. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optim. Control Appl. Meth., 20 (1999), 145-164.
doi: {10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J}. |
[20] |
B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis, SIAM J. on Control and Optimization, 34 (1996), 1914-1946.
doi: 10.1137/S0363012993256149. |
[21] |
B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality, SIAM J. on Control and Optimization, 39 (2000), 359-410.
doi: 10.1137/S0363012999322031. |
[22] |
L. Pontryagin, V. Boltyanski, R. Gamkrelidze and E. Michtchenko, The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962. |
[23] |
H. Schattler and M. Jankovic, A synthesis of time-optimal controls in the presence of saturated singular arcs, Forum Mathematicum, 5 (1993), 203-241.
doi: 10.1515/form.1993.5.203. |
[24] |
H. Schattler and U. Ledzewicz, Geometric Optimal Control, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[25] |
C. J. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems, IEEE Trans. Automat. Control, 55 (2010), 2488-2499.
doi: 10.1109/TAC.2010.2047742. |
[26] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043. |
[27] |
P. Spinelli and G. Solay Rakotonirayni, Minimum time problem synthesis, Systems and Control Letters, 10 (1988), 281-290.
doi: 10.1016/0167-6911(88)90018-7. |
[28] |
H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The $C^{\infty}$ nonsingular case, SIAM J. on Control and Optimization, 25 (1987), 433-465.
doi: 10.1137/0325025. |
[29] |
H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The general real analytic case, SIAM J. on Control and Optimization, 25 (1987), 868-904.
doi: 10.1137/0325048. |
[30] |
H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. on Control and Optimization, 25 (1987), 1145-1162.
doi: 10.1137/0325062. |
show all references
References:
[1] |
T. Bayen, P. Gajardo and F. Mairet, Optimal synthesis for the minimal time control problems of fed-batch processes for growth functions with two maxima, J. Optim. Theory and Applications, 158 (2013), 521-553.
doi: 10.1007/s10957-012-0225-0. |
[2] |
T. Bayen and F. Mairet, Minimal time control of fed-batch bioreactor with product inhibition, Bioprocess and Biosystems Engineering, 36 (2013), 1485-1496. |
[3] |
B. Bonnard, J.-B. Caillau and E. Trélat, Second order optimality conditions in the smooth case and applications in optimal control, ESAIM Control Optim. Calc. Var., 13 (2007), 207-236.
doi: 10.1051/cocv:2007012. |
[4] |
B. Bonnard and M. Chyba, Singular Trajectories and Their Role in Control Theory, Vol. 40, Springer-Verlag, Berlin, 2003. |
[5] |
B. Bonnard, M. Chyba and D. Sugny, Time-minimal control of dissipative two-level quantum systems: The generic case, IEEE Trans. Automat. Contr., 54 (2009), 2598-2610.
doi: 10.1109/TAC.2009.2031212. |
[6] |
B. Bonnard, J.-P. Gauthier and J. de Morant, Geometric time-optimal control for batch reactors, in Analysis of Controlled Dynamical Systems (eds. B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka), Birkhäuser, 1991, 69-87.
doi: 10.1109/CDC.1991.261646. |
[7] |
B. Bonnard and J. de Morant, Towards a geometric theory in the time minimal control of chemical batch reactors, SIAM J. on Control and Opt., 33 (1995), 1279-1311.
doi: 10.1137/S0363012992241338. |
[8] |
U. Boscain and B. Piccoli, Optimal Syntheses for Control Systems on 2-D Manifolds, Vol. 43, Springer-Verlag, Berlin, 2004. |
[9] |
U. Boscain and B. Piccoli, Extremal synthesis for generic planar systems, Journal of Dynamical and Control Systems, 7 (2001), 209-258.
doi: 10.1023/A:1013003204923. |
[10] |
A. Bressan and B. Piccoli, A generic classification of time optimal planar stabilizing feedbacks, SIAM J. on Control and Optimization, 36 (1998), 12-32.
doi: 10.1137/S0363012995291117. |
[11] |
Jr. A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control, Hemisphere Publishing Corp., Washington, D. C., 1975. |
[12] |
D. Dochain and A. Rapaport, Minimal time control of fed-batch processes with growth functions having several maxima, IEEE Trans. Automat. Contr., 56 (2011), 2671-2676.
doi: 10.1109/TAC.2011.2159424. |
[13] |
D. Dochain and P. Vanrolleghem, Dynamical Modelling and Estimation in Wastewater Treatment Processes, IWA Publishing, U.K., 2001. |
[14] |
P. Gajardo, H. Ramirez and A. Rapaport, Minimal time sequential batch reactors with bounded and impulse controls for one or more species, SIAM J. Control Optim., 47 (2008), 2827-2856.
doi: 10.1137/070695204. |
[15] |
U. Ledzewicz and H. Schättler, Antiangiogenic therapy in cancer treatment as an optimal control problem, SIAM J. on Control and Optimization, 46 (2007), 1052-1079.
doi: 10.1137/060665294. |
[16] |
J. Lee, S. Y. Lee, S. Park and A. P. J. Middelberg, Control of fed-batch fermentations, Biotechnology Advances, 17 (1999), 29-48.
doi: 10.1016/S0734-9750(98)00015-9. |
[17] |
A. Miele, Application of Green's theorem to the extremization of linear integrals, in Symp. on Vehicle Systems Optimization, Garden City, New York, 1961. |
[18] |
J. Monod, Recherches sur la Croissance des Cultures Bactériennes, Hermann, Paris, 1942. |
[19] |
J. A. Moreno, Optimal time control of bioreactors for the wastewater treatment, Optim. Control Appl. Meth., 20 (1999), 145-164.
doi: {10.1002/(SICI)1099-1514(199905/06)20:3<145::AID-OCA651>3.0.CO;2-J}. |
[20] |
B. Piccoli, Classification of generic singularities for the planar time-optimal synthesis, SIAM J. on Control and Optimization, 34 (1996), 1914-1946.
doi: 10.1137/S0363012993256149. |
[21] |
B. Piccoli and H. J. Sussmann, Regular synthesis and sufficiency conditions for optimality, SIAM J. on Control and Optimization, 39 (2000), 359-410.
doi: 10.1137/S0363012999322031. |
[22] |
L. Pontryagin, V. Boltyanski, R. Gamkrelidze and E. Michtchenko, The Mathematical Theory of Optimal Processes, Wiley Interscience, New York, 1962. |
[23] |
H. Schattler and M. Jankovic, A synthesis of time-optimal controls in the presence of saturated singular arcs, Forum Mathematicum, 5 (1993), 203-241.
doi: 10.1515/form.1993.5.203. |
[24] |
H. Schattler and U. Ledzewicz, Geometric Optimal Control, Springer, New York, 2012.
doi: 10.1007/978-1-4614-3834-2. |
[25] |
C. J. Silva and E. Trélat, Smooth regularization of bang-bang optimal control problems, IEEE Trans. Automat. Control, 55 (2010), 2488-2499.
doi: 10.1109/TAC.2010.2047742. |
[26] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511530043. |
[27] |
P. Spinelli and G. Solay Rakotonirayni, Minimum time problem synthesis, Systems and Control Letters, 10 (1988), 281-290.
doi: 10.1016/0167-6911(88)90018-7. |
[28] |
H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The $C^{\infty}$ nonsingular case, SIAM J. on Control and Optimization, 25 (1987), 433-465.
doi: 10.1137/0325025. |
[29] |
H. Sussmann, The structure of time-optimal trajectories for single-input systems in the plane: The general real analytic case, SIAM J. on Control and Optimization, 25 (1987), 868-904.
doi: 10.1137/0325048. |
[30] |
H. Sussmann, Regular synthesis for time-optimal control of single-input real analytic systems in the plane, SIAM J. on Control and Optimization, 25 (1987), 1145-1162.
doi: 10.1137/0325062. |
[1] |
Jinggui Gao, Xiaoyan Zhao, Jinggang Zhai. Optimal control of microbial fed-batch culture involving multiple feeds. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 339-349. doi: 10.3934/naco.2015.5.339 |
[2] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1709-1721. doi: 10.3934/jimo.2021040 |
[3] |
Chongyang Liu, Zhaohua Gong, Enmin Feng, Hongchao Yin. Modelling and optimal control for nonlinear multistage dynamical system of microbial fed-batch culture. Journal of Industrial and Management Optimization, 2009, 5 (4) : 835-850. doi: 10.3934/jimo.2009.5.835 |
[4] |
Bangyu Shen, Xiaojing Wang, Chongyang Liu. Nonlinear state-dependent impulsive system in fed-batch culture and its optimal control. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 369-380. doi: 10.3934/naco.2015.5.369 |
[5] |
Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1697-1709. doi: 10.3934/dcdss.2020099 |
[6] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations and Control Theory, 2022, 11 (2) : 347-371. doi: 10.3934/eect.2020110 |
[7] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
[8] |
Xiao-Li Ding, Iván Area, Juan J. Nieto. Controlled singular evolution equations and Pontryagin type maximum principle with applications. Evolution Equations and Control Theory, 2021 doi: 10.3934/eect.2021059 |
[9] |
Zaidong Zhan, Shuping Chen, Wei Wei. A unified theory of maximum principle for continuous and discrete time optimal control problems. Mathematical Control and Related Fields, 2012, 2 (2) : 195-215. doi: 10.3934/mcrf.2012.2.195 |
[10] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[11] |
Volker Rehbock, Iztok Livk. Optimal control of a batch crystallization process. Journal of Industrial and Management Optimization, 2007, 3 (3) : 585-596. doi: 10.3934/jimo.2007.3.585 |
[12] |
Hancheng Guo, Jie Xiong. A second-order stochastic maximum principle for generalized mean-field singular control problem. Mathematical Control and Related Fields, 2018, 8 (2) : 451-473. doi: 10.3934/mcrf.2018018 |
[13] |
Md. Haider Ali Biswas, Maria do Rosário de Pinho. A nonsmooth maximum principle for optimal control problems with state and mixed constraints - convex case. Conference Publications, 2011, 2011 (Special) : 174-183. doi: 10.3934/proc.2011.2011.174 |
[14] |
Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161 |
[15] |
Zhen Wu, Feng Zhang. Maximum principle for discrete-time stochastic optimal control problem and stochastic game. Mathematical Control and Related Fields, 2022, 12 (2) : 475-493. doi: 10.3934/mcrf.2021031 |
[16] |
Omid S. Fard, Javad Soolaki, Delfim F. M. Torres. A necessary condition of Pontryagin type for fuzzy fractional optimal control problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (1) : 59-76. doi: 10.3934/dcdss.2018004 |
[17] |
Shanjian Tang. A second-order maximum principle for singular optimal stochastic controls. Discrete and Continuous Dynamical Systems - B, 2010, 14 (4) : 1581-1599. doi: 10.3934/dcdsb.2010.14.1581 |
[18] |
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 |
[19] |
Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control and Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022 |
[20] |
Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]