Citation: |
[1] |
C. H. T. Baker, A perspective on the numerical treatment of Volterra equations, J Comput Appl Math, 125 (2000), 217-249.doi: 10.1016/S0377-0427(00)00470-2. |
[2] |
D. Barbolosi, F. Verga, A. Benabdallah and F. Hubert, Mathematical and numerical analysis for a model of growing metastatic tumors, Math Biosci, 218 (2009), 1-14.doi: 10.1016/j.mbs.2008.11.008. |
[3] |
D. Barbolosi, F. Verga, B. You, A. Benabdallah, F. Hubert, C. Mercier, J. Ciccolini and C. Faivre, Modélisation du risque d'évolution métastatique chez les patients supposés avoir une maladie localisée, Oncologie, 13 (2011), 528-533.doi: 10.1007/s10269-011-2028-6. |
[4] |
S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis, J Evol Equ, 11 (2011), 187-213.doi: 10.1007/s00028-010-0088-5. |
[5] |
S. Benzekry, Modélisation et Analyse Mathématique de Thérapies Anti-cancéreuses Pour Les Cancers Métastatiques, Ph.D thesis, Aix-Marseille Université, 2011. |
[6] |
S. Benzekry, Mathematical and numerical analysis of a model for anti-angiogenic therapy in metastatic cancers, ESAIM-Math Model Num, 46 (2012), 207-237.doi: 10.1051/m2an/2011041. |
[7] |
S. Benzekry, A. Gandolfi and P. Hahnfeldt, Global Dormancy of Metastases due to Systemic Inhibition of Angiogenesis, PLoS One, 9 (2014), e84249.doi: 10.1371/journal.pone.0084249. |
[8] |
H. Brunner, E. Hairer and S. P. Nøorsett, Runge-Kutta theory for Volterra integral equations of the second kind, Math Comp, 39 (1982), 147-163.doi: 10.1090/S0025-5718-1982-0658219-8. |
[9] |
L. C. Chaffer and R. A. Weinberg, A perspective on cancer cell metastasis, Science, 331 (2011), 1559-1564.doi: 10.1126/science.1203543. |
[10] |
A. Devys, T. Goudon and P. Lafitte, A model describing the growth and the size distribution of multiple metastatic tumors, Discret Contin Dyn S, 12 (2009), 731-767.doi: 10.3934/dcdsb.2009.12.731. |
[11] |
G. P. Gupta and J. Massagué, Cancer metastasis: Building a framework, Cell, 127 (2006), 679-695.doi: 10.1016/j.cell.2006.11.001. |
[12] |
M. Gyllenberg and G. F. Webb, Quiescence as an explanation of Gompertzian tumor growth, Growth Develop Aging, 53 (1989), 25-33. |
[13] |
P. Hahnfeldt, D. Panigrahy, J. Folkman and L. Hlatky, Tumor development under angiogenic signaling: A dynamical theory of tumor growth, response and postvascular dormancy, Cancer Res, 59 (1999), 4770-4775. |
[14] |
E. Hairer, C. Lubich and M. Schlichte, Fast numerical solution of nonlinear Volterra convolution equations, J Sci Stat Comp, 5 (1985), 532-541.doi: 10.1137/0906037. |
[15] |
N. Hartung, S. Mollard, D. Barbolosi, A. Benabdallah, G. Chapuisat, J. Ciccolini, C. Faivre, S. Giacometti, G. Henry, A. Iliadis and F. Hubert, Mathematical modeling of tumor growth and metastatic spreading: Validation in tumor-bearing mice, Cancer Res, 15 (2014), p6397.doi: 10.1158/0008-5472.CAN-14-0721. |
[16] |
V. Haustein and U. Schumacher, A dynamic model for tumour growth and metastasis formation, J Clin Bioinforma, 2 (2012), p11.doi: 10.1186/2043-9113-2-11. |
[17] |
M. Ianelli, Mathematical Theory of Age-Structured Population Dynamics, Applied Mathematical Monographs, C.N.R.I., Giardini Editori e Stampatori, Pisa, 1995. |
[18] |
K. Iwata, K. Kawasaki and N. Shigesada, A Dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, J Theor Biol, 203 (2000), 177-186.doi: 10.1006/jtbi.2000.1075. |
[19] |
T. Lalescu, Introduction À la Théorie Des Équations Intégrales. Avec Une Préface de É. Picard, A. Hermann et Fils, Paris, 1912. |
[20] |
A. G. McKendrick, Applications of mathematics to medical problems, Proc Edinburgh Math Soc, 44 (1926), 98-130. |
[21] |
B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, Basel, 2007. |
[22] |
P. Pouzet, Étude en vue de leur traitement numérique des équations intégrales de type Volterra, Rev Franç Traitement Information Chiffres, 6 (1963), 79-112. |
[23] |
J. G. Scott, P. Gerlee, D. Basanta, A. G. Fletcher, P. K. Maini and A. R. A. Anderson, Mathematical modelling of the metastatic process, preprint, arXiv:1305.4622. |
[24] |
A. Stein, D. DeWoskin, M. Higley, K. Lemoi, B. Owens, A. Rahman, H. Rotstein, D. Rumschitzki, S. Swaminathan, M. Tanzy, O. Varfolomiyev, T. Witelski and V.Zubekov, Dynamic Models of Metastatic Tumor Growth, Final Report of the 27th Annual Workshop on Mathematical Problems in Industry, New Jersey Institute of Technology, 2011. |
[25] |
F. Verga, Modélisation Mathématique de Processus Métastatiques, Ph.D thesis, Aix-Marseille Université, 2010. |
[26] |
H. Von Foerster, Some remarks on changing populations, in The Kinetics of Cell Proliferation, (1959), 382-407. |
[27] |
T. E. Wheldon, Mathematical Models in Cancer Reseach, Medical Science Series, Adam Hilger, Bristol and Philadelphia, 1988. |