March  2015, 20(2): 495-504. doi: 10.3934/dcdsb.2015.20.495

Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element

1. 

Department of Fundamental Courses, Ningbo Institute of Technology, Zhejiang University, Ningbo, 315100, China

2. 

School of Mathematics and Computer Science, Shangrao Normal University, Shangrao, 334001, China

Received  August 2013 Revised  October 2014 Published  January 2015

In this article, using the well-known Superconvergent Patch Recovery (SPR) method, we present a gradient superconvergence post-processing scheme for the tensor-product quadratic pentahedral finite element approximation to the solution of a general second-order elliptic boundary value problem in three dimensions over fully uniform meshes. The supercloseness property of the gradients between the finite element solution $u_h$ and the tensor-product quadratic interpolation $\Pi u$ is first given. Then we show that the gradient recovered from the finite element solution by using the SPR method is superconvergent to $\nabla u$ at interior vertices.
Citation: Jinghong Liu, Yinsuo Jia. Gradient superconvergence post-processing of the tensor-product quadratic pentahedral finite element. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 495-504. doi: 10.3934/dcdsb.2015.20.495
References:
[1]

I. Babuška and T. Strouboulis, The finite element method and its reliability,, in Numerical Mathematics and Scientific Computation, (2001). Google Scholar

[2]

J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation,, SIAM Journal on Numerical Analysis, 7 (1970), 112. doi: 10.1137/0707006. Google Scholar

[3]

C. M. Chen, Construction Theory of Superconvergence of Finite Elements,, Hunan Science and Technology Press, (2001). Google Scholar

[4]

C. M. Chen and Y. Q. Huang, High Accuracy Theory of Finite Element Methods,, Hunan Science and Technology Press, (1995). Google Scholar

[5]

J. Chen and D. S. Wang, Three-dimensional finite element superconvergent gradient recovery on Par6 patterns,, Numerical Mathematics: Theory, 3 (2010), 178. doi: 10.4208/nmtma.2010.32s.4. Google Scholar

[6]

L. Chen, Superconvergence of tetrahedral linear finite elements,, International Journal of Numerical Analysis and Modeling, 3 (2006), 273. Google Scholar

[7]

G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral element,, Numerical Methods for Partial Differential Equations, 10 (1994), 651. doi: 10.1002/num.1690100511. Google Scholar

[8]

Q. Lin and N. N. Yan, Construction and Analysis of High Efficient Finite Elements,, Hebei University Press, (1996). Google Scholar

[9]

J. H. Liu, Superconvergence of tensor-product quadratic pentahedral elements for variable coefficient elliptic equations,, Journal of Computational Analysis and Applications, 14 (2012), 745. Google Scholar

[10]

L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods,, Lecture Notes in Mathematics vol. 1605, (1605). Google Scholar

[11]

Z. M. Zhang, Ultraconvergence of the patch recovery technique,, Mathematics of Computation, 65 (1996), 1431. doi: 10.1090/S0025-5718-96-00782-X. Google Scholar

[12]

Z. M. Zhang, Ultraconvergence of the patch recovery technique II,, Mathematics of Computation, 69 (2000), 141. doi: 10.1090/S0025-5718-99-01205-3. Google Scholar

[13]

Z. M. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property,, SIAM Journal on Scientific Computing, 26 (2005), 1192. doi: 10.1137/S1064827503402837. Google Scholar

[14]

Z. M. Zhang and H. D. Victory Jr., Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery technique,, Numerical Methods for Partial Differential Equations, 12 (1996), 507. doi: 10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q. Google Scholar

[15]

Z. M. Zhang and J. Z. Zhu, Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method (I),, Computer Methods in Applied Mechanics and Engineering, 123 (1995), 173. doi: 10.1016/0045-7825(95)00780-5. Google Scholar

[16]

Z. M. Zhang and J. Z. Zhu, Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method (II),, Computer Methods in Applied Mechanics and Engineering, 163 (1998), 159. doi: 10.1016/S0045-7825(98)00010-3. Google Scholar

[17]

Q. D. Zhu, High Accuracy Post-Processing Theory of the Finite Element Method,, Science Press, (2008). Google Scholar

[18]

Q. D. Zhu and Q. Lin, The Superconvergence Theory of Finite Elements,, Hunan Science and Technology Press, (1989). Google Scholar

[19]

O. C. Zienkiewicz and J. Z. Zhu, A simple estimator and adaptive procedure for practical engineering analysis,, International Journal for Numerical Methods in Engineering, 24 (1987), 337. doi: 10.1002/nme.1620240206. Google Scholar

[20]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery techniques,, International Journal for Numerical Methods in Engineering, 33 (1992), 1331. doi: 10.1002/nme.1620330702. Google Scholar

[21]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity,, International Journal for Numerical Methods in Engineering, 33 (1992), 1365. doi: 10.1002/nme.1620330703. Google Scholar

show all references

References:
[1]

I. Babuška and T. Strouboulis, The finite element method and its reliability,, in Numerical Mathematics and Scientific Computation, (2001). Google Scholar

[2]

J. H. Bramble and S. R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation,, SIAM Journal on Numerical Analysis, 7 (1970), 112. doi: 10.1137/0707006. Google Scholar

[3]

C. M. Chen, Construction Theory of Superconvergence of Finite Elements,, Hunan Science and Technology Press, (2001). Google Scholar

[4]

C. M. Chen and Y. Q. Huang, High Accuracy Theory of Finite Element Methods,, Hunan Science and Technology Press, (1995). Google Scholar

[5]

J. Chen and D. S. Wang, Three-dimensional finite element superconvergent gradient recovery on Par6 patterns,, Numerical Mathematics: Theory, 3 (2010), 178. doi: 10.4208/nmtma.2010.32s.4. Google Scholar

[6]

L. Chen, Superconvergence of tetrahedral linear finite elements,, International Journal of Numerical Analysis and Modeling, 3 (2006), 273. Google Scholar

[7]

G. Goodsell, Pointwise superconvergence of the gradient for the linear tetrahedral element,, Numerical Methods for Partial Differential Equations, 10 (1994), 651. doi: 10.1002/num.1690100511. Google Scholar

[8]

Q. Lin and N. N. Yan, Construction and Analysis of High Efficient Finite Elements,, Hebei University Press, (1996). Google Scholar

[9]

J. H. Liu, Superconvergence of tensor-product quadratic pentahedral elements for variable coefficient elliptic equations,, Journal of Computational Analysis and Applications, 14 (2012), 745. Google Scholar

[10]

L. B. Wahlbin, Superconvergence in Galerkin Finite Element Methods,, Lecture Notes in Mathematics vol. 1605, (1605). Google Scholar

[11]

Z. M. Zhang, Ultraconvergence of the patch recovery technique,, Mathematics of Computation, 65 (1996), 1431. doi: 10.1090/S0025-5718-96-00782-X. Google Scholar

[12]

Z. M. Zhang, Ultraconvergence of the patch recovery technique II,, Mathematics of Computation, 69 (2000), 141. doi: 10.1090/S0025-5718-99-01205-3. Google Scholar

[13]

Z. M. Zhang and A. Naga, A new finite element gradient recovery method: Superconvergence property,, SIAM Journal on Scientific Computing, 26 (2005), 1192. doi: 10.1137/S1064827503402837. Google Scholar

[14]

Z. M. Zhang and H. D. Victory Jr., Mathematical analysis of Zienkiewicz-Zhu's derivative patch recovery technique,, Numerical Methods for Partial Differential Equations, 12 (1996), 507. doi: 10.1002/(SICI)1098-2426(199607)12:4<507::AID-NUM6>3.0.CO;2-Q. Google Scholar

[15]

Z. M. Zhang and J. Z. Zhu, Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method (I),, Computer Methods in Applied Mechanics and Engineering, 123 (1995), 173. doi: 10.1016/0045-7825(95)00780-5. Google Scholar

[16]

Z. M. Zhang and J. Z. Zhu, Analysis of the superconvergence patch recovery techniques and a posteriori error estimator in the finite element method (II),, Computer Methods in Applied Mechanics and Engineering, 163 (1998), 159. doi: 10.1016/S0045-7825(98)00010-3. Google Scholar

[17]

Q. D. Zhu, High Accuracy Post-Processing Theory of the Finite Element Method,, Science Press, (2008). Google Scholar

[18]

Q. D. Zhu and Q. Lin, The Superconvergence Theory of Finite Elements,, Hunan Science and Technology Press, (1989). Google Scholar

[19]

O. C. Zienkiewicz and J. Z. Zhu, A simple estimator and adaptive procedure for practical engineering analysis,, International Journal for Numerical Methods in Engineering, 24 (1987), 337. doi: 10.1002/nme.1620240206. Google Scholar

[20]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery and a posteriori error estimates. Part 1: The recovery techniques,, International Journal for Numerical Methods in Engineering, 33 (1992), 1331. doi: 10.1002/nme.1620330702. Google Scholar

[21]

O. C. Zienkiewicz and J. Z. Zhu, The superconvergence patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity,, International Journal for Numerical Methods in Engineering, 33 (1992), 1365. doi: 10.1002/nme.1620330703. Google Scholar

[1]

Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163

[2]

Yinnian He, R. M.M. Mattheij. Reformed post-processing Galerkin method for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 369-387. doi: 10.3934/dcdsb.2007.8.369

[3]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

[4]

A. Naga, Z. Zhang. The polynomial-preserving recovery for higher order finite element methods in 2D and 3D. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 769-798. doi: 10.3934/dcdsb.2005.5.769

[5]

Yangyang Xu, Wotao Yin. A fast patch-dictionary method for whole image recovery. Inverse Problems & Imaging, 2016, 10 (2) : 563-583. doi: 10.3934/ipi.2016012

[6]

Volodymyr Nekrashevych. The Julia set of a post-critically finite endomorphism of $\mathbb{PC}^2$. Journal of Modern Dynamics, 2012, 6 (3) : 327-375. doi: 10.3934/jmd.2012.6.327

[7]

Gonzalo Galiano, Julián Velasco. Finite element approximation of a population spatial adaptation model. Mathematical Biosciences & Engineering, 2013, 10 (3) : 637-647. doi: 10.3934/mbe.2013.10.637

[8]

Cornel M. Murea, H. G. E. Hentschel. A finite element method for growth in biological development. Mathematical Biosciences & Engineering, 2007, 4 (2) : 339-353. doi: 10.3934/mbe.2007.4.339

[9]

Eduardo Casas, Mariano Mateos, Arnd Rösch. Finite element approximation of sparse parabolic control problems. Mathematical Control & Related Fields, 2017, 7 (3) : 393-417. doi: 10.3934/mcrf.2017014

[10]

Martin Burger, José A. Carrillo, Marie-Therese Wolfram. A mixed finite element method for nonlinear diffusion equations. Kinetic & Related Models, 2010, 3 (1) : 59-83. doi: 10.3934/krm.2010.3.59

[11]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[12]

Eduardo Casas, Boris Vexler, Enrique Zuazua. Sparse initial data identification for parabolic PDE and its finite element approximations. Mathematical Control & Related Fields, 2015, 5 (3) : 377-399. doi: 10.3934/mcrf.2015.5.377

[13]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[14]

Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757

[15]

Wolf-Jüergen Beyn, Janosch Rieger. Galerkin finite element methods for semilinear elliptic differential inclusions. Discrete & Continuous Dynamical Systems - B, 2013, 18 (2) : 295-312. doi: 10.3934/dcdsb.2013.18.295

[16]

Lijuan Wang, Jun Zou. Error estimates of finite element methods for parameter identifications in elliptic and parabolic systems. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1641-1670. doi: 10.3934/dcdsb.2010.14.1641

[17]

Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153

[18]

Kun Wang, Yinnian He, Yueqiang Shang. Fully discrete finite element method for the viscoelastic fluid motion equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 665-684. doi: 10.3934/dcdsb.2010.13.665

[19]

Junjiang Lai, Jianguo Huang. A finite element method for vibration analysis of elastic plate-plate structures. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 387-419. doi: 10.3934/dcdsb.2009.11.387

[20]

Chunjuan Hou, Yanping Chen, Zuliang Lu. Superconvergence property of finite element methods for parabolic optimal control problems. Journal of Industrial & Management Optimization, 2011, 7 (4) : 927-945. doi: 10.3934/jimo.2011.7.927

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]