March  2015, 20(2): 505-518. doi: 10.3934/dcdsb.2015.20.505

Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system

1. 

School of Mathematics, South China Normal University, Guangzhou, Guangdong 510631, China

2. 

School of Mathematics, South China Normal University, Guangzhou 510631

Received  July 2013 Revised  October 2014 Published  January 2015

This paper is concerned with a three dimensional diffusive Lotka-Volterra system which is combined with cooperative-competitive interactions between the three species. By using the method of super-sub solutions and comparison principle with cross iteration, some results on the asymptotic spreading speed of the system are established under certain assumptions on the parameters appearing in the system.
Citation: Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial Differential Equations and Related Topics (ed. J. A. Goldstein), 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic,, J. Diff. Eqns., 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, Bulletin of Math. Biol., 60 (1998), 435.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[5]

X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics,, Nonlinear Anal. Real World Appl., 9 (2008), 2196.  doi: 10.1016/j.nonrwa.2007.07.007.  Google Scholar

[6]

A. M. Huang, P. X. Weng and Y. H. Huang, Stability of a three-dimensional diffusive Lotka-Volterra system of type-K with delays,, Appl. Anal., 92 (2013), 2357.  doi: 10.1080/00036811.2012.738360.  Google Scholar

[7]

A. M. Huang and P. X. Weng, Traveling wavefronts for a Lotka-Volterra system of type-$K$ with delays,, Nonlinear Anal. Real World Appl., 14 (2013), 1114.  doi: 10.1016/j.nonrwa.2012.09.002.  Google Scholar

[8]

L. C. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species,, Nonlinear Anal. Real World Appl., 12 (2011), 3691.  doi: 10.1016/j.nonrwa.2011.07.002.  Google Scholar

[9]

L. C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species,, Jpn. J. Ind. Appl. Math., 29 (2012), 237.  doi: 10.1007/s13160-012-0056-2.  Google Scholar

[10]

S. B. Hsu and X.-Q. Zhao, Speading speed and traveling wave for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, SIAM J. Math. Anal., 26 (1995), 340.  doi: 10.1137/S0036141093244556.  Google Scholar

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonlinear Anal., 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[13]

A. W. Leung , X. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, J. Math. Anal. Appl., 338 (2008), 902.  doi: 10.1016/j.jmaa.2007.05.066.  Google Scholar

[14]

A. W. Leung , X. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 171.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[15]

M. A. Lewis, B. T. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[16]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[17]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions,, European J. Appl. Math., 23 (2012), 669.  doi: 10.1017/S0956792512000198.  Google Scholar

[18]

G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: a cooperative system,, Phys. D, 241 (2012), 705.  doi: 10.1016/j.physd.2011.12.007.  Google Scholar

[19]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[20]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[23]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.  doi: 10.2307/2000859.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995).   Google Scholar

[25]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equatons and asymptotic speeds for the spread of populatins,, J. Reine Angew. Math., 306 (1979), 94.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[26]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model,, J. Diff. Eqns., 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[27]

Q. R. Wang and K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity,, J. Comput. Appl. Math., 233 (2010), 2549.  doi: 10.1016/j.cam.2009.11.002.  Google Scholar

[28]

M. X. Wang, Nonlinear Parabolic Equations,, Science Press, (1993).   Google Scholar

[29]

H. F. Weinberger, Asymptotic behavior of a model in population genetics,, in Nonlinear Partial Equations and applications (ed. J. M. Chadam), 648 (1978), 47.   Google Scholar

[30]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. T. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[32]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Maths., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[33]

P. X. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Diff. Eqns., 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[34]

Q. X. Ye and Z. Y. Li, Theory of Reaction Diffusion Equations,, Science Press, (1994).   Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial Differential Equations and Related Topics (ed. J. A. Goldstein), 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic,, J. Diff. Eqns., 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, Bulletin of Math. Biol., 60 (1998), 435.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[5]

X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics,, Nonlinear Anal. Real World Appl., 9 (2008), 2196.  doi: 10.1016/j.nonrwa.2007.07.007.  Google Scholar

[6]

A. M. Huang, P. X. Weng and Y. H. Huang, Stability of a three-dimensional diffusive Lotka-Volterra system of type-K with delays,, Appl. Anal., 92 (2013), 2357.  doi: 10.1080/00036811.2012.738360.  Google Scholar

[7]

A. M. Huang and P. X. Weng, Traveling wavefronts for a Lotka-Volterra system of type-$K$ with delays,, Nonlinear Anal. Real World Appl., 14 (2013), 1114.  doi: 10.1016/j.nonrwa.2012.09.002.  Google Scholar

[8]

L. C. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species,, Nonlinear Anal. Real World Appl., 12 (2011), 3691.  doi: 10.1016/j.nonrwa.2011.07.002.  Google Scholar

[9]

L. C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species,, Jpn. J. Ind. Appl. Math., 29 (2012), 237.  doi: 10.1007/s13160-012-0056-2.  Google Scholar

[10]

S. B. Hsu and X.-Q. Zhao, Speading speed and traveling wave for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, SIAM J. Math. Anal., 26 (1995), 340.  doi: 10.1137/S0036141093244556.  Google Scholar

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonlinear Anal., 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[13]

A. W. Leung , X. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, J. Math. Anal. Appl., 338 (2008), 902.  doi: 10.1016/j.jmaa.2007.05.066.  Google Scholar

[14]

A. W. Leung , X. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 171.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[15]

M. A. Lewis, B. T. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[16]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[17]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions,, European J. Appl. Math., 23 (2012), 669.  doi: 10.1017/S0956792512000198.  Google Scholar

[18]

G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: a cooperative system,, Phys. D, 241 (2012), 705.  doi: 10.1016/j.physd.2011.12.007.  Google Scholar

[19]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[20]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[23]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.  doi: 10.2307/2000859.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995).   Google Scholar

[25]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equatons and asymptotic speeds for the spread of populatins,, J. Reine Angew. Math., 306 (1979), 94.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[26]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model,, J. Diff. Eqns., 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[27]

Q. R. Wang and K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity,, J. Comput. Appl. Math., 233 (2010), 2549.  doi: 10.1016/j.cam.2009.11.002.  Google Scholar

[28]

M. X. Wang, Nonlinear Parabolic Equations,, Science Press, (1993).   Google Scholar

[29]

H. F. Weinberger, Asymptotic behavior of a model in population genetics,, in Nonlinear Partial Equations and applications (ed. J. M. Chadam), 648 (1978), 47.   Google Scholar

[30]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. T. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[32]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Maths., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[33]

P. X. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Diff. Eqns., 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[34]

Q. X. Ye and Z. Y. Li, Theory of Reaction Diffusion Equations,, Science Press, (1994).   Google Scholar

[1]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[2]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[3]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[4]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[5]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[6]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[10]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[11]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[17]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[18]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[19]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[20]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]