March  2015, 20(2): 505-518. doi: 10.3934/dcdsb.2015.20.505

Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system

1. 

School of Mathematics, South China Normal University, Guangzhou, Guangdong 510631, China

2. 

School of Mathematics, South China Normal University, Guangzhou 510631

Received  July 2013 Revised  October 2014 Published  January 2015

This paper is concerned with a three dimensional diffusive Lotka-Volterra system which is combined with cooperative-competitive interactions between the three species. By using the method of super-sub solutions and comparison principle with cross iteration, some results on the asymptotic spreading speed of the system are established under certain assumptions on the parameters appearing in the system.
Citation: Yubin Liu, Peixuan Weng. Asymptotic spreading of a three dimensional Lotka-Volterra cooperative-competitive system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 505-518. doi: 10.3934/dcdsb.2015.20.505
References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial Differential Equations and Related Topics (ed. J. A. Goldstein), 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic,, J. Diff. Eqns., 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, Bulletin of Math. Biol., 60 (1998), 435.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[5]

X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics,, Nonlinear Anal. Real World Appl., 9 (2008), 2196.  doi: 10.1016/j.nonrwa.2007.07.007.  Google Scholar

[6]

A. M. Huang, P. X. Weng and Y. H. Huang, Stability of a three-dimensional diffusive Lotka-Volterra system of type-K with delays,, Appl. Anal., 92 (2013), 2357.  doi: 10.1080/00036811.2012.738360.  Google Scholar

[7]

A. M. Huang and P. X. Weng, Traveling wavefronts for a Lotka-Volterra system of type-$K$ with delays,, Nonlinear Anal. Real World Appl., 14 (2013), 1114.  doi: 10.1016/j.nonrwa.2012.09.002.  Google Scholar

[8]

L. C. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species,, Nonlinear Anal. Real World Appl., 12 (2011), 3691.  doi: 10.1016/j.nonrwa.2011.07.002.  Google Scholar

[9]

L. C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species,, Jpn. J. Ind. Appl. Math., 29 (2012), 237.  doi: 10.1007/s13160-012-0056-2.  Google Scholar

[10]

S. B. Hsu and X.-Q. Zhao, Speading speed and traveling wave for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, SIAM J. Math. Anal., 26 (1995), 340.  doi: 10.1137/S0036141093244556.  Google Scholar

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonlinear Anal., 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[13]

A. W. Leung , X. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, J. Math. Anal. Appl., 338 (2008), 902.  doi: 10.1016/j.jmaa.2007.05.066.  Google Scholar

[14]

A. W. Leung , X. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 171.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[15]

M. A. Lewis, B. T. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[16]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[17]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions,, European J. Appl. Math., 23 (2012), 669.  doi: 10.1017/S0956792512000198.  Google Scholar

[18]

G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: a cooperative system,, Phys. D, 241 (2012), 705.  doi: 10.1016/j.physd.2011.12.007.  Google Scholar

[19]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[20]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[23]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.  doi: 10.2307/2000859.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995).   Google Scholar

[25]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equatons and asymptotic speeds for the spread of populatins,, J. Reine Angew. Math., 306 (1979), 94.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[26]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model,, J. Diff. Eqns., 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[27]

Q. R. Wang and K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity,, J. Comput. Appl. Math., 233 (2010), 2549.  doi: 10.1016/j.cam.2009.11.002.  Google Scholar

[28]

M. X. Wang, Nonlinear Parabolic Equations,, Science Press, (1993).   Google Scholar

[29]

H. F. Weinberger, Asymptotic behavior of a model in population genetics,, in Nonlinear Partial Equations and applications (ed. J. M. Chadam), 648 (1978), 47.   Google Scholar

[30]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. T. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[32]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Maths., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[33]

P. X. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Diff. Eqns., 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[34]

Q. X. Ye and Z. Y. Li, Theory of Reaction Diffusion Equations,, Science Press, (1994).   Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial Differential Equations and Related Topics (ed. J. A. Goldstein), 446 (1975), 5.   Google Scholar

[2]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[3]

O. Diekmann, Run for your life. A note on the asymptotic speed of propagation of an epidemic,, J. Diff. Eqns., 33 (1979), 58.  doi: 10.1016/0022-0396(79)90080-9.  Google Scholar

[4]

Y. Hosono, The minimal speed of traveling fronts for a diffusive Lotka-Volterra competition model,, Bulletin of Math. Biol., 60 (1998), 435.  doi: 10.1006/bulm.1997.0008.  Google Scholar

[5]

X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics,, Nonlinear Anal. Real World Appl., 9 (2008), 2196.  doi: 10.1016/j.nonrwa.2007.07.007.  Google Scholar

[6]

A. M. Huang, P. X. Weng and Y. H. Huang, Stability of a three-dimensional diffusive Lotka-Volterra system of type-K with delays,, Appl. Anal., 92 (2013), 2357.  doi: 10.1080/00036811.2012.738360.  Google Scholar

[7]

A. M. Huang and P. X. Weng, Traveling wavefronts for a Lotka-Volterra system of type-$K$ with delays,, Nonlinear Anal. Real World Appl., 14 (2013), 1114.  doi: 10.1016/j.nonrwa.2012.09.002.  Google Scholar

[8]

L. C. Hung, Traveling wave solutions of competitive-cooperative Lotka-Volterra systems of three species,, Nonlinear Anal. Real World Appl., 12 (2011), 3691.  doi: 10.1016/j.nonrwa.2011.07.002.  Google Scholar

[9]

L. C. Hung, Exact traveling wave solutions for diffusive Lotka-Volterra systems of two competing species,, Jpn. J. Ind. Appl. Math., 29 (2012), 237.  doi: 10.1007/s13160-012-0056-2.  Google Scholar

[10]

S. B. Hsu and X.-Q. Zhao, Speading speed and traveling wave for nonmonotone integrodifference equations,, SIAM J. Math. Anal., 40 (2008), 776.  doi: 10.1137/070703016.  Google Scholar

[11]

Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations,, SIAM J. Math. Anal., 26 (1995), 340.  doi: 10.1137/S0036141093244556.  Google Scholar

[12]

Y. Kan-on, Fisher wave fronts for the Lotka-Volterra competition model with diffusion,, Nonlinear Anal., 28 (1997), 145.  doi: 10.1016/0362-546X(95)00142-I.  Google Scholar

[13]

A. W. Leung , X. J. Hou and Y. Li, Exclusive traveling waves for competitive reaction-diffusion systems and their stabilities,, J. Math. Anal. Appl., 338 (2008), 902.  doi: 10.1016/j.jmaa.2007.05.066.  Google Scholar

[14]

A. W. Leung , X. J. Hou and W. Feng, Traveling wave solutions for Lotka-Volterra system re-visited,, Discrete Contin. Dyn. Syst. Ser. B, 15 (2011), 171.  doi: 10.3934/dcdsb.2011.15.171.  Google Scholar

[15]

M. A. Lewis, B. T. Li and H. F. Weinberger, Spreading speed and linear determinacy for two-species competition models,, J. Math. Biol., 45 (2002), 219.  doi: 10.1007/s002850200144.  Google Scholar

[16]

X. Liang and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with application,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[17]

G. Lin and W. T. Li, Asymptotic spreading of competition diffusion systems: The role of interspecific competitions,, European J. Appl. Math., 23 (2012), 669.  doi: 10.1017/S0956792512000198.  Google Scholar

[18]

G. Lin, Asymptotic spreading fastened by inter-specific coupled nonlinearities: a cooperative system,, Phys. D, 241 (2012), 705.  doi: 10.1016/j.physd.2011.12.007.  Google Scholar

[19]

R. Lui, Biological growth and spread modeled by systems of recursions. I. Mathematical theory,, Math. Biosci., 93 (1989), 269.  doi: 10.1016/0025-5564(89)90026-6.  Google Scholar

[20]

R. Lui, Biological growth and spread modeled by systems of recursions. II. Biological theory,, Math. Biosci., 93 (1989), 297.  doi: 10.1016/0025-5564(89)90027-8.  Google Scholar

[21]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[22]

C. V. Pao, Nonlinear Parabolic and Elliptic Equations,, Plenum Press, (1992).   Google Scholar

[23]

K. W. Schaaf, Asymptotic behavior and traveling wave solutions for parabolic functional differential equations,, Trans. Amer. Math. Soc., 302 (1987), 587.  doi: 10.2307/2000859.  Google Scholar

[24]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems,, American Mathematical Society, (1995).   Google Scholar

[25]

H. R. Thieme, Asymptotic estimates of the solutions of nonlinear integral equatons and asymptotic speeds for the spread of populatins,, J. Reine Angew. Math., 306 (1979), 94.  doi: 10.1515/crll.1979.306.94.  Google Scholar

[26]

H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion model,, J. Diff. Eqns., 195 (2003), 430.  doi: 10.1016/S0022-0396(03)00175-X.  Google Scholar

[27]

Q. R. Wang and K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity,, J. Comput. Appl. Math., 233 (2010), 2549.  doi: 10.1016/j.cam.2009.11.002.  Google Scholar

[28]

M. X. Wang, Nonlinear Parabolic Equations,, Science Press, (1993).   Google Scholar

[29]

H. F. Weinberger, Asymptotic behavior of a model in population genetics,, in Nonlinear Partial Equations and applications (ed. J. M. Chadam), 648 (1978), 47.   Google Scholar

[30]

H. F. Weinberger, Long-time behavior of a class of biological models,, SIAM J. Math. Anal., 13 (1982), 353.  doi: 10.1137/0513028.  Google Scholar

[31]

H. F. Weinberger, M. A. Lewis and B. T. Li, Analysis of linear determinacy for spread in cooperative models,, J. Math. Biol., 45 (2002), 183.  doi: 10.1007/s002850200145.  Google Scholar

[32]

P. X. Weng, H. X. Huang and J. H. Wu, Asymptotic speed of propagation of wave fronts in a lattice delay differential equation with global interaction,, IMA J. Appl. Maths., 68 (2003), 409.  doi: 10.1093/imamat/68.4.409.  Google Scholar

[33]

P. X. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemic model,, J. Diff. Eqns., 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[34]

Q. X. Ye and Z. Y. Li, Theory of Reaction Diffusion Equations,, Science Press, (1994).   Google Scholar

[1]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[2]

Zhiguo Wang, Hua Nie, Yihong Du. Asymptotic spreading speed for the weak competition system with a free boundary. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5223-5262. doi: 10.3934/dcds.2019213

[3]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[4]

Meng Zhao, Wan-Tong Li, Wenjie Ni. Spreading speed of a degenerate and cooperative epidemic model with free boundaries. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 981-999. doi: 10.3934/dcdsb.2019199

[5]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[6]

Lin Niu, Yi Wang. Non-oscillation principle for eventually competitive and cooperative systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6481-6494. doi: 10.3934/dcdsb.2019148

[7]

Chang-Hong Wu. Spreading speed and traveling waves for a two-species weak competition system with free boundary. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2441-2455. doi: 10.3934/dcdsb.2013.18.2441

[8]

Xinjian Wang, Guo Lin. Asymptotic spreading for a time-periodic predator-prey system. Communications on Pure & Applied Analysis, 2019, 18 (6) : 2983-2999. doi: 10.3934/cpaa.2019133

[9]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[10]

Yanqin Fang, De Tang. Method of sub-super solutions for fractional elliptic equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3153-3165. doi: 10.3934/dcdsb.2017212

[11]

Takashi Kajiwara. The sub-supersolution method for the FitzHugh-Nagumo type reaction-diffusion system with heterogeneity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2441-2465. doi: 10.3934/dcds.2018101

[12]

Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663

[13]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[14]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[15]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

[16]

Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779

[17]

Yongqin Liu, Shuichi Kawashima. Asymptotic behavior of solutions to a model system of a radiating gas. Communications on Pure & Applied Analysis, 2011, 10 (1) : 209-223. doi: 10.3934/cpaa.2011.10.209

[18]

Rafał Celiński, Andrzej Raczyński. Asymptotic profile of solutions to a certain chemotaxis system. Communications on Pure & Applied Analysis, 2020, 19 (2) : 911-922. doi: 10.3934/cpaa.2020041

[19]

Gregoire Nadin. How does the spreading speed associated with the Fisher-KPP equation depend on random stationary diffusion and reaction terms?. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1785-1803. doi: 10.3934/dcdsb.2015.20.1785

[20]

Fengqi Yi, Hua Zhang, Alhaji Cherif, Wenying Zhang. Spatiotemporal patterns of a homogeneous diffusive system modeling hair growth: Global asymptotic behavior and multiple bifurcation analysis. Communications on Pure & Applied Analysis, 2014, 13 (1) : 347-369. doi: 10.3934/cpaa.2014.13.347

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]