# American Institute of Mathematical Sciences

March  2015, 20(2): 519-586. doi: 10.3934/dcdsb.2015.20.519

## Mode structure of a semiconductor laser with feedback from two external filters

 1 Mathematics Research Institute, CEMPS, University of Exeter, North Park Road, Exeter EX4 4QF, United Kingdom 2 Department of Mathematics, The University of Auckland, Private Bag 92019, Auckland 1142 3 Department of Applied Mathematics, University College Cork, Western Gateway Building, Cork, Ireland

Received  April 2014 Revised  May 2014 Published  January 2015

We investigate the solution structure and stability of a semiconductor laser receiving time-delayed and frequency-filtered optical feedback from two external filters. This system is referred to as the 2FOF laser, and it has been used as pump laser in optical telecommunication and as light source in sensor applications. The underlying idea is that the two filter loops provide a means of stabilizing and controling the laser output. The mathematical model takes the form of delay differential equations for the (real-valued) population inversion of the laser active medium and for the (complex-valued) electric fields of the laser cavity and of the two filters. There are two time delays, which are the travel times of the light from the laser to each of the filters and back.
Our analysis of the 2FOF laser focuses on the basic solutions, known as continuous waves or external filtered modes (EFMs), which correspond to laser output with steady amplitude and frequency. Specifically, we consider the EFM-surface in the $(\omega_s,\,N_s,\,dC_p)$-space of steady frequency $\omega_s$, the corresponding steady population inversion $N_s$, and the feedback phase difference $dC_p$. This surface emerges as the natural object for the study of the 2FOF laser because it conveniently catalogues information about available frequency ranges of the EFMs. We identify five transitions, through four different singularities and a cubic tangency, which change the type of the EFM-surface locally and determine the EFM-surface bifurcation diagram in the $(\Delta_1,\,\Delta_2)$-plane. In this way, we classify the possible types of the EFM-surface, which consist of a combination of bands (covering the entire $dC_p$-range) and islands (covering only a finite range of $dC_p$).
We also investigate the stability of the EFMs, where we focus on saddle-node and Hopf bifurcation curves that bound regions of stable EFMs on the EFM-surface. It is shown how these stability regions evolve when parameters are changed along a chosen path in the $(\Delta_1,\,\Delta_2)$-plane. From a viewpoint of practical interests, we find various bands and islands of stability on the EFM-surface that may be accessible experimentally.
Beyond their relevance for the 2FOF laser system, the results presented here also showcase how advanced tools from bifurcation theory and singularity theory can be employed to uncover and represent the complex solution structure of a delay differential equation model that depends on a considerable number of input parameters, including two time delays.
Citation: Piotr Słowiński, Bernd Krauskopf, Sebastian Wieczorek. Mode structure of a semiconductor laser with feedback from two external filters. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 519-586. doi: 10.3934/dcdsb.2015.20.519
##### References:

show all references

##### References:
 [1] Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 [2] Tomás Caraballo, Renato Colucci, Luca Guerrini. Bifurcation scenarios in an ordinary differential equation with constant and distributed delay: A case study. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2639-2655. doi: 10.3934/dcdsb.2018268 [3] Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 [4] Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 [5] Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355 [6] Songbai Guo, Jing-An Cui, Wanbiao Ma. An analysis approach to permanence of a delay differential equations model of microorganism flocculation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3831-3844. doi: 10.3934/dcdsb.2021208 [7] Marion Weedermann. Analysis of a model for the effects of an external toxin on anaerobic digestion. Mathematical Biosciences & Engineering, 2012, 9 (2) : 445-459. doi: 10.3934/mbe.2012.9.445 [8] Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215 [9] Ruiqiang Guo, Lu Song. Optical chaotic secure algorithm based on space laser communication. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1355-1369. doi: 10.3934/dcdss.2019093 [10] Jinhu Xu, Yicang Zhou. Bifurcation analysis of HIV-1 infection model with cell-to-cell transmission and immune response delay. Mathematical Biosciences & Engineering, 2016, 13 (2) : 343-367. doi: 10.3934/mbe.2015006 [11] Ming Liu, Dongpo Hu, Fanwei Meng. Stability and bifurcation analysis in a delay-induced predator-prey model with Michaelis-Menten type predator harvesting. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3197-3222. doi: 10.3934/dcdss.2020259 [12] Lukas F. Lang, Otmar Scherzer. Optical flow on evolving sphere-like surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 305-338. doi: 10.3934/ipi.2017015 [13] Bernold Fiedler, Isabelle Schneider. Stabilized rapid oscillations in a delay equation: Feedback control by a small resonant delay. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1145-1185. doi: 10.3934/dcdss.2020068 [14] Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 [15] Pankaj Kumar, Shiv Raj. Modelling and analysis of prey-predator model involving predation of mature prey using delay differential equations. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021035 [16] François Béguin. Smale diffeomorphisms of surfaces: a classification algorithm. Discrete and Continuous Dynamical Systems, 2004, 11 (2&3) : 261-310. doi: 10.3934/dcds.2004.11.261 [17] Fengqi Yi, Eamonn A. Gaffney, Sungrim Seirin-Lee. The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 647-668. doi: 10.3934/dcdsb.2017031 [18] Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021053 [19] Miaoran Yao, Yongxin Zhang, Wendi Wang. Bifurcation analysis for an in-host Mycobacterium tuberculosis model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2299-2322. doi: 10.3934/dcdsb.2020324 [20] Bing Zeng, Pei Yu. A hierarchical parametric analysis on Hopf bifurcation of an epidemic model. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022069

2021 Impact Factor: 1.497

## Metrics

• HTML views (0)
• Cited by (4)

• on AIMS