Citation: |
[1] |
F. Belgacem, Elliptic Boundary Value Problems with Indefinite Weights: Variational Formulations of the Principal Eigenvalue and Applications, Pitman Res, Notes Math. Ser. 368, Longman Sci., 1997. |
[2] |
X. Chen and Y. Lou, Principal eigenvalue and eigenfunctions of an elliptic operator with large advection and its application to a competition model, Indiana Univ. Math. J., 57 (2008), 627-658.doi: 10.1512/iumj.2008.57.3204. |
[3] |
Y. Du and S.-B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton I: Existence, SIAM J. Math. Anal., 40 (2008), 1419-1440.doi: 10.1137/07070663X. |
[4] |
Y. Du and S.-B. Hsu, Concentration phenomena in a nonlocal quasi-linear problem modelling phytoplankton II: Limiting profile, SIAM J. Math. Anal., 40 (2008), 1441-1470.doi: 10.1137/070706641. |
[5] |
Y. Du and S.-B. Hsu, On a nonlocal reaction-diffusion problem arising from the modelling of phytoplankton growth, SIAM J. Math. Anal., 42 (2010), 1305-1333.doi: 10.1137/090775105. |
[6] |
Y. Du and L. Mei, On a nonlocal reaction-diffusion-advection equation modeling phytoplankton dynamics, Nonlinearity, 24 (2011), 319-349.doi: 10.1088/0951-7715/24/1/016. |
[7] |
W. M. Durham, J. O. Kessler and R. Stoker, Disruptive of vertical motility by shear triggers formation of phytoplankton layers, Science, 323 (2009), 1067-1070.doi: 10.1126/science.1167334. |
[8] |
J. Huisman, M. Arrayas, U. Ebert and B.Sommeijer, How do sinking phytoplankton species manage to persist? Amer. Naturalist, 159 (2002), 245-254.doi: 10.1086/338511. |
[9] |
U. Ebert, M. Arrays, N. Temme, B. Sommeijer and J. Huisman, Critical conditions for phytoplankton blooms, Bull. Math. Biol., 63 (2001), 1095-1124.doi: 10.1006/bulm.2001.0261. |
[10] |
J. Huisman, P. Oostveen and F. J. Weissing, Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light, Amer. Naturalist, 154 (1999), 46-68.doi: 10.1086/303220. |
[11] |
J. Huisman, N. N. Pham Thi, D. K. Karl and B. Sommeijer, Reduced mixing generates oscillations and chaos in oceanic deep chlorophyll, Nature, 439 (2006), 322-325.doi: 10.1038/nature04245. |
[12] |
J. Huisman and F. J. Wessing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model, Ecology, 75 (1994), 507-520.doi: 10.2307/1939554. |
[13] |
J. Huisman and F. J. Wessing, Competition for nutrients and light in a mixed water column: A theoretical analysis, Amer. Naturalist, 146 (1995), 536-564.doi: 10.1086/285814. |
[14] |
S.-B. Hsu and Y. Lou, Single phytoplankton species growth with light and advection in a water column, SIAM J. Appl. Math., 70 (2010), 2942-2974.doi: 10.1137/100782358. |
[15] |
H. Ishii and I. Takagi, Global stability of stationary solutions to a nonlinear diffusion equation in phytoplankton dynamics, J. Math. Biology, 16 (1982), 1-24.doi: 10.1007/BF00275157. |
[16] |
C. A. Klausmeier and E. Litchman, Algae games: The vertical distribution of pytoplankton in poorly mixed water columns, Limnol. Oceanogr., 46 (2001), 1998-2007. |
[17] |
C. A. Klausmeier, E. Litchman and S. A. Levin, Phytoplankton growth and stoichimetry under multiple nutrient limitation, Limnol. Oceanogr., 49 (2004), 1463-1470.doi: 10.4319/lo.2004.49.4_part_2.1463. |
[18] |
E. Litchman, C. A. Klausmeier, J. R. Miller, O. M. Schofield and P. G. Falkowski, Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities, Biogeosci., 3 (2006), 585-606.doi: 10.5194/bg-3-585-2006. |
[19] |
N. Shigesada and A. Okubo, Analysis of the self-shading effect on algal vertical distribution in natural waters, J. Math. Biol., 12 (1981), 311-326.doi: 10.1007/BF00276919. |
[20] |
K. Yoshiyama, J. P. Mellard, E. Litchman and C. A. Klausmeier, Phytoplankton competition for nutrients and light in a stratified water column, Amer. Naturalist, 174 (2009), 190-203.doi: 10.1086/600113. |
[21] |
F. J. Weissing and J. Huisman, Growth and competition in a lighted gradient, J. Theoret. Biol., 168 (1994), 323-336.doi: 10.1006/jtbi.1994.1113. |