March  2015, 20(2): 641-673. doi: 10.3934/dcdsb.2015.20.641

Global estimates and blow-up criteria for the generalized Hunter-Saxton system

1. 

Department of Mathematics, University of Colorado, Boulder, CO 80309-0395

Received  July 2013 Revised  November 2014 Published  January 2015

The generalized, two-component Hunter-Saxton system comprises several well-known models of fluid dynamics and serves as a tool for the study of one-dimensional fluid convection and stretching. In this article a general representation formula for periodic solutions to the system, which is valid for arbitrary values of parameters $(\lambda,\kappa) \in \mathbb{R} \times \mathbb{R}$, is derived. This allows us to examine in great detail qualitative properties of blow-up as well as the asymptotic behaviour of solutions, including convergence to steady states in finite or infinite time.
Citation: Alejandro Sarria. Global estimates and blow-up criteria for the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 641-673. doi: 10.3934/dcdsb.2015.20.641
References:
[1]

E. W. Barnes, A New Development of the Theory of Hypergeometric Functions,, Proc. London Math. Soc.(2), 6 (1908), 141. doi: 10.1112/plms/s2-6.1.141. Google Scholar

[2]

R. Beals, D. H. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-Saxton equation,, Appl. Anal., 78 (2001), 255. doi: 10.1080/00036810108840938. Google Scholar

[3]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal, 37 (2005), 996. doi: 10.1137/050623036. Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245. doi: 10.4007/annals.2007.166.245. Google Scholar

[6]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion,, Comm. Math. Phys., 310 (2012), 537. doi: 10.1007/s00220-011-1409-4. Google Scholar

[7]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, preprint, (). Google Scholar

[8]

D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations,, Nonlinearity, 21 (2008), 2053. doi: 10.1088/0951-7715/21/9/007. Google Scholar

[9]

X. Chen and H. Okamoto, Global existence of solutions to the Proudman-Johnson equation,, Proc.Japan Acad., 76 (2000), 149. doi: 10.3792/pjaa.76.149. Google Scholar

[10]

X. Chen and H. Okamoto, Global existence of solutions to the generalized Proudman-Johnson equation,, Proc.Japan Acad., 78 (2002), 136. doi: 10.3792/pjaa.78.136. Google Scholar

[11]

S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form,, J. Fluid Mech., 203 (1989), 1. doi: 10.1017/S0022112089001357. Google Scholar

[12]

C. H. Cho and M. Wunsch, Global and singular solutions to the generalized Proudman-Johnson equation,, J. Diff. Eqns., 249 (2010), 392. doi: 10.1016/j.jde.2010.03.013. Google Scholar

[13]

C. H. Cho and M. Wunsch, Global weak solutions to the generalized Proudman-Johnson equation,, Commun. Pure Appl. Ana., 11 (2012), 1387. doi: 10.3934/cpaa.2012.11.1387. Google Scholar

[14]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Physics Letters A, 372 (2008), 7129. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[15]

A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation,, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81. doi: 10.3792/pjaa.85.81. Google Scholar

[16]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations,, Arch. Rational Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[17]

P. Constantin, P. D. Lax and A. Majda, A simple one dimensional model for the three dimensional vorticity equation,, Commun. Pure Appl. Math., 38 (1985), 715. doi: 10.1002/cpa.3160380605. Google Scholar

[18]

C. M. Dafermos, Generalized characteristics and the Hunter-Saxton equation,, J. Hyperbol. Differ. Eq., 8 (2011), 159. doi: 10.1142/S0219891611002366. Google Scholar

[19]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dyn. Res., 33 (2003), 73. doi: 10.1016/S0169-5983(03)00046-7. Google Scholar

[20]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I,, McGraw-Hill, (1981), 56. Google Scholar

[21]

V. P. Ermakov, Univ. Izv. Kiev 20,, 1 (1880)., (1880). Google Scholar

[22]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow up phenomena for the 2-component Camassa-Holm equations,, Discrete Contin. Dyn. Syst., 19 (2007), 493. doi: 10.3934/dcds.2007.19.493. Google Scholar

[23]

T. W. Gamelin, Complex Analysis,, Undergraduate Texts in Mathematics, (2001). doi: 10.1007/978-0-387-21607-2. Google Scholar

[24]

G. Gasper and M. Rahman, Basic Hypergeometric Series,, Encyclopedia of Mathematics and Its Applications, (2004). doi: 10.1017/CBO9780511526251. Google Scholar

[25]

A. E. Gill, Atmosphere-Ocean Dynamics,, Academic Press, (1982). Google Scholar

[26]

A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth,, J. Fluid Mech., 78 (1976), 237. doi: 10.1017/S0022112076002425. Google Scholar

[27]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[28]

Z. Guo, Blow up and global solutions to a new integrable model with two components,, J. Math. Anal. Appl., 372 (2010), 316. doi: 10.1016/j.jmaa.2010.06.046. Google Scholar

[29]

Z. Guo and Y. Zhou, On Solutions to a two-component generalized Camassa-Holm equation,, Stud. Appl. Math., 124 (2010), 307. doi: 10.1111/j.1467-9590.2009.00472.x. Google Scholar

[30]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323. doi: 10.1137/S1111111102410943. Google Scholar

[31]

T. Y. Hou and C. Li, Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661. doi: 10.1002/cpa.20212. Google Scholar

[32]

J. K. Hunter and R. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498. doi: 10.1137/0151075. Google Scholar

[33]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid. Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[34]

R. S. Johnson, The Camassa-Holm equation for water waves moving over a shear flow,, Fluid Dyn. Res., 33 (2003), 97. doi: 10.1016/S0169-5983(03)00036-4. Google Scholar

[35]

P. Kevrekidis and Y. Drossinos, Nonlinearity from linearity: The Ermakov-Pinney equation revisited,, Mathematics and Computers in Simulation, 74 (2007), 196. doi: 10.1016/j.matcom.2006.10.005. Google Scholar

[36]

B. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro orbits,, Adv. Math., 176 (2003), 116. doi: 10.1016/S0001-8708(02)00063-4. Google Scholar

[37]

B. Khesin, J. Lenells, G. Misiolek and S. C. Preston, Geometry of diffeomorphism groups, complete integrability and optimal transport,, Geom. and Funct. Anal., 23 (2013), 334. doi: 10.1007/s00039-013-0210-2. Google Scholar

[38]

J. Lenells, Weak geodesic flow and global solutions of the Hunter-Saxton equation,, Discrete Contin. Dyn. Syst., 18 (2007), 643. doi: 10.3934/dcds.2007.18.643. Google Scholar

[39]

J. Lenells and O. Lechtenfeld, On the $N=2$ supersymmetric Camassa-Holm and Hunter-Saxton equations,, J. Math. Phys., 50 (2009), 1. doi: 10.1063/1.3060125. Google Scholar

[40]

J. Lenells and M. Wunsch, The Hunter-Saxton system and the geodesics on a pseudosphere,, Commun. Part. Diff. Eq., 38 (2013), 860. doi: 10.1080/03605302.2013.771660. Google Scholar

[41]

J. Liu and Z. Yin, Blow-up phenomena and global existence for a periodic two-component Hunter-Saxton system,, preprint, (). Google Scholar

[42]

J. Liu and Z. Yin, Global weak solutions for a periodic two-component $\mu-$Hunter-Saxton system,, Monatshefte f$\dot u$r Mathematik, 168 (2012), 503. doi: 10.1007/s00605-011-0346-9. Google Scholar

[43]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean,, Courant Lecture Notes in Mathematics, (2003). Google Scholar

[44]

G. Misiolek, Classical solutions of the periodic Camassa-Holm equation,, Geom. Funct. Anal., 12 (2002), 1080. doi: 10.1007/PL00012648. Google Scholar

[45]

K. Mohajer, A note on traveling wave solutions to the two-component Camassa-Holm equation,, J. Nonlinear Math. Phys., 16 (2009), 117. doi: 10.1142/S140292510900011X. Google Scholar

[46]

B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system,, J. Differ. Equations, 253 (2012), 319. doi: 10.1016/j.jde.2012.02.011. Google Scholar

[47]

B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system,, Nonlinear Anal-Theor., 89 (2013), 242. doi: 10.1016/j.na.2013.05.004. Google Scholar

[48]

O. G. Mustafa, On smooth traveling waves of an integrable two-component Camassa-Holm equation,, Wave Motion, 46 (2009), 397. doi: 10.1016/j.wavemoti.2009.06.011. Google Scholar

[49]

H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid,, J. Phys. Soc. Japan, 74 (2005), 2737. doi: 10.1143/JPSJ.74.2737. Google Scholar

[50]

H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics,, Taiwanese J. Math., 4 (2000), 65. Google Scholar

[51]

H. Okamoto, Well-posedness of the generalized Proudman-Johnson equation without viscosity,, J. Math. Fluid Mech., 11 (2009), 46. doi: 10.1007/s00021-007-0247-9. Google Scholar

[52]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447. doi: 10.1088/0951-7715/21/10/013. Google Scholar

[53]

M. V. Pavlov, The Gurevich-Zybin system,, J. Phys. A: Math. Gen., 38 (2005), 3823. doi: 10.1088/0305-4470/38/17/008. Google Scholar

[54]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer-Verlag, (1987). Google Scholar

[55]

E. Pinney, The nonlinear differential equation $y''+p(x)y+cy^{-3}=0$,, Proc. Amer. Math. Soc., 1 (1950). Google Scholar

[56]

I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point,, J. Fluid Mech., 12 (1962), 161. doi: 10.1017/S0022112062000130. Google Scholar

[57]

A. Sarria and R. Saxton, Blow-up of solutions to the generalized inviscid Proudman-Johnson equation,, J. Math Fluid Mech., 15 (2013), 493. doi: 10.1007/s00021-012-0126-x. Google Scholar

[58]

A. Sarria and R. Saxton, The role of initial curvature in solutions to the generalized inviscid Proudman-Johnson equation,, Q. Appl. Math., (). Google Scholar

[59]

A. Sarria, Regularity of stagnation point-form solutions of the two-dimensional Euler equations,, Differential and Integral Equations, (). Google Scholar

[60]

A. Sarria and J. Wu, Blowup in stagnation-point form solutions of the inviscid 2d Boussinesq equations, submitted,, preprint, (). Google Scholar

[61]

R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid,, SIAM J. Math. Anal., 40 (2008), 1499. doi: 10.1137/080713768. Google Scholar

[62]

F. Tiglay, The periodic Cauchy problem of the modified Hunter-Saxton equation,, J. Evol. Eq., 5 (2005), 509. doi: 10.1007/s00028-005-0215-x. Google Scholar

[63]

H. Weyl, On the differential equations of the simplest boundary-layer problems,, Ann. Math., 43 (1942), 381. doi: 10.2307/1968875. Google Scholar

[64]

H. Wu and M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system,, J. Math. Fluid Mech., 14 (2012), 455. doi: 10.1007/s00021-011-0075-9. Google Scholar

[65]

M. Wunsch, The generalized Proudman-Johnson equation revisited,, J. Math. Fluid Mech., 13 (2011), 147. doi: 10.1007/s00021-009-0004-3. Google Scholar

[66]

M. Wunsch, On the Hunter-Saxton system,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 647. doi: 10.3934/dcdsb.2009.12.647. Google Scholar

[67]

M. Wunsch, The generalized Hunter-Saxton system,, SIAM J. Math. Anal., 42 (2010), 1286. doi: 10.1137/090768576. Google Scholar

[68]

M. Wunsch, Weak geodesic flow on a semidirect product and global solutions to the periodic Hunter-Saxton system,, Nonlinear Anal-Theor., 74 (2011), 4951. doi: 10.1016/j.na.2011.04.041. Google Scholar

[69]

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation,, SIAM J. Math. Anal., 36 (2004), 272. doi: 10.1137/S0036141003425672. Google Scholar

[70]

P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, Int. Math. Res. Notices, (2010), 1981. doi: 10.1093/imrn/rnp211. Google Scholar

show all references

References:
[1]

E. W. Barnes, A New Development of the Theory of Hypergeometric Functions,, Proc. London Math. Soc.(2), 6 (1908), 141. doi: 10.1112/plms/s2-6.1.141. Google Scholar

[2]

R. Beals, D. H. Sattinger and J. Szmigielski, Inverse scattering solutions of the Hunter-Saxton equation,, Appl. Anal., 78 (2001), 255. doi: 10.1080/00036810108840938. Google Scholar

[3]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal, 37 (2005), 996. doi: 10.1137/050623036. Google Scholar

[4]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245. doi: 10.4007/annals.2007.166.245. Google Scholar

[6]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional stratified primitive equations with partial vertical mixing turbulence diffusion,, Comm. Math. Phys., 310 (2012), 537. doi: 10.1007/s00220-011-1409-4. Google Scholar

[7]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, preprint, (). Google Scholar

[8]

D. Chae, On the blow-up problem for the axisymmetric 3D Euler equations,, Nonlinearity, 21 (2008), 2053. doi: 10.1088/0951-7715/21/9/007. Google Scholar

[9]

X. Chen and H. Okamoto, Global existence of solutions to the Proudman-Johnson equation,, Proc.Japan Acad., 76 (2000), 149. doi: 10.3792/pjaa.76.149. Google Scholar

[10]

X. Chen and H. Okamoto, Global existence of solutions to the generalized Proudman-Johnson equation,, Proc.Japan Acad., 78 (2002), 136. doi: 10.3792/pjaa.78.136. Google Scholar

[11]

S. Childress, G. R. Ierley, E. A. Spiegel and W. R. Young, Blow-up of unsteady two-dimensional Euler and Navier-Stokes equations having stagnation-point form,, J. Fluid Mech., 203 (1989), 1. doi: 10.1017/S0022112089001357. Google Scholar

[12]

C. H. Cho and M. Wunsch, Global and singular solutions to the generalized Proudman-Johnson equation,, J. Diff. Eqns., 249 (2010), 392. doi: 10.1016/j.jde.2010.03.013. Google Scholar

[13]

C. H. Cho and M. Wunsch, Global weak solutions to the generalized Proudman-Johnson equation,, Commun. Pure Appl. Ana., 11 (2012), 1387. doi: 10.3934/cpaa.2012.11.1387. Google Scholar

[14]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Physics Letters A, 372 (2008), 7129. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[15]

A. Constantin and M. Wunsch, On the inviscid Proudman-Johnson equation,, Proc. Japan Acad. Ser. A Math. Sci., 85 (2009), 81. doi: 10.3792/pjaa.85.81. Google Scholar

[16]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi Equations,, Arch. Rational Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[17]

P. Constantin, P. D. Lax and A. Majda, A simple one dimensional model for the three dimensional vorticity equation,, Commun. Pure Appl. Math., 38 (1985), 715. doi: 10.1002/cpa.3160380605. Google Scholar

[18]

C. M. Dafermos, Generalized characteristics and the Hunter-Saxton equation,, J. Hyperbol. Differ. Eq., 8 (2011), 159. doi: 10.1142/S0219891611002366. Google Scholar

[19]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dyn. Res., 33 (2003), 73. doi: 10.1016/S0169-5983(03)00046-7. Google Scholar

[20]

A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions, Vol. I,, McGraw-Hill, (1981), 56. Google Scholar

[21]

V. P. Ermakov, Univ. Izv. Kiev 20,, 1 (1880)., (1880). Google Scholar

[22]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow up phenomena for the 2-component Camassa-Holm equations,, Discrete Contin. Dyn. Syst., 19 (2007), 493. doi: 10.3934/dcds.2007.19.493. Google Scholar

[23]

T. W. Gamelin, Complex Analysis,, Undergraduate Texts in Mathematics, (2001). doi: 10.1007/978-0-387-21607-2. Google Scholar

[24]

G. Gasper and M. Rahman, Basic Hypergeometric Series,, Encyclopedia of Mathematics and Its Applications, (2004). doi: 10.1017/CBO9780511526251. Google Scholar

[25]

A. E. Gill, Atmosphere-Ocean Dynamics,, Academic Press, (1982). Google Scholar

[26]

A. Green and P. Naghdi, A derivation of equations for wave propagation in water of variable depth,, J. Fluid Mech., 78 (1976), 237. doi: 10.1017/S0022112076002425. Google Scholar

[27]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[28]

Z. Guo, Blow up and global solutions to a new integrable model with two components,, J. Math. Anal. Appl., 372 (2010), 316. doi: 10.1016/j.jmaa.2010.06.046. Google Scholar

[29]

Z. Guo and Y. Zhou, On Solutions to a two-component generalized Camassa-Holm equation,, Stud. Appl. Math., 124 (2010), 307. doi: 10.1111/j.1467-9590.2009.00472.x. Google Scholar

[30]

D. D. Holm and M. F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Appl. Dyn. Syst., 2 (2003), 323. doi: 10.1137/S1111111102410943. Google Scholar

[31]

T. Y. Hou and C. Li, Dynamic stability of the three-dimensional axisymmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661. doi: 10.1002/cpa.20212. Google Scholar

[32]

J. K. Hunter and R. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498. doi: 10.1137/0151075. Google Scholar

[33]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid. Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[34]

R. S. Johnson, The Camassa-Holm equation for water waves moving over a shear flow,, Fluid Dyn. Res., 33 (2003), 97. doi: 10.1016/S0169-5983(03)00036-4. Google Scholar

[35]

P. Kevrekidis and Y. Drossinos, Nonlinearity from linearity: The Ermakov-Pinney equation revisited,, Mathematics and Computers in Simulation, 74 (2007), 196. doi: 10.1016/j.matcom.2006.10.005. Google Scholar

[36]

B. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro orbits,, Adv. Math., 176 (2003), 116. doi: 10.1016/S0001-8708(02)00063-4. Google Scholar

[37]

B. Khesin, J. Lenells, G. Misiolek and S. C. Preston, Geometry of diffeomorphism groups, complete integrability and optimal transport,, Geom. and Funct. Anal., 23 (2013), 334. doi: 10.1007/s00039-013-0210-2. Google Scholar

[38]

J. Lenells, Weak geodesic flow and global solutions of the Hunter-Saxton equation,, Discrete Contin. Dyn. Syst., 18 (2007), 643. doi: 10.3934/dcds.2007.18.643. Google Scholar

[39]

J. Lenells and O. Lechtenfeld, On the $N=2$ supersymmetric Camassa-Holm and Hunter-Saxton equations,, J. Math. Phys., 50 (2009), 1. doi: 10.1063/1.3060125. Google Scholar

[40]

J. Lenells and M. Wunsch, The Hunter-Saxton system and the geodesics on a pseudosphere,, Commun. Part. Diff. Eq., 38 (2013), 860. doi: 10.1080/03605302.2013.771660. Google Scholar

[41]

J. Liu and Z. Yin, Blow-up phenomena and global existence for a periodic two-component Hunter-Saxton system,, preprint, (). Google Scholar

[42]

J. Liu and Z. Yin, Global weak solutions for a periodic two-component $\mu-$Hunter-Saxton system,, Monatshefte f$\dot u$r Mathematik, 168 (2012), 503. doi: 10.1007/s00605-011-0346-9. Google Scholar

[43]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean,, Courant Lecture Notes in Mathematics, (2003). Google Scholar

[44]

G. Misiolek, Classical solutions of the periodic Camassa-Holm equation,, Geom. Funct. Anal., 12 (2002), 1080. doi: 10.1007/PL00012648. Google Scholar

[45]

K. Mohajer, A note on traveling wave solutions to the two-component Camassa-Holm equation,, J. Nonlinear Math. Phys., 16 (2009), 117. doi: 10.1142/S140292510900011X. Google Scholar

[46]

B. Moon and Y. Liu, Wave breaking and global existence for the generalized periodic two-component Hunter-Saxton system,, J. Differ. Equations, 253 (2012), 319. doi: 10.1016/j.jde.2012.02.011. Google Scholar

[47]

B. Moon, Solitary wave solutions of the generalized two-component Hunter-Saxton system,, Nonlinear Anal-Theor., 89 (2013), 242. doi: 10.1016/j.na.2013.05.004. Google Scholar

[48]

O. G. Mustafa, On smooth traveling waves of an integrable two-component Camassa-Holm equation,, Wave Motion, 46 (2009), 397. doi: 10.1016/j.wavemoti.2009.06.011. Google Scholar

[49]

H. Okamoto and K. Ohkitani, On the role of the convection term in the equations of motion of incompressible fluid,, J. Phys. Soc. Japan, 74 (2005), 2737. doi: 10.1143/JPSJ.74.2737. Google Scholar

[50]

H. Okamoto and J. Zhu, Some similarity solutions of the Navier-Stokes equations and related topics,, Taiwanese J. Math., 4 (2000), 65. Google Scholar

[51]

H. Okamoto, Well-posedness of the generalized Proudman-Johnson equation without viscosity,, J. Math. Fluid Mech., 11 (2009), 46. doi: 10.1007/s00021-007-0247-9. Google Scholar

[52]

H. Okamoto, T. Sakajo and M. Wunsch, On a generalization of the Constantin-Lax-Majda equation,, Nonlinearity, 21 (2008), 2447. doi: 10.1088/0951-7715/21/10/013. Google Scholar

[53]

M. V. Pavlov, The Gurevich-Zybin system,, J. Phys. A: Math. Gen., 38 (2005), 3823. doi: 10.1088/0305-4470/38/17/008. Google Scholar

[54]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer-Verlag, (1987). Google Scholar

[55]

E. Pinney, The nonlinear differential equation $y''+p(x)y+cy^{-3}=0$,, Proc. Amer. Math. Soc., 1 (1950). Google Scholar

[56]

I. Proudman and K. Johnson, Boundary-layer growth near a rear stagnation point,, J. Fluid Mech., 12 (1962), 161. doi: 10.1017/S0022112062000130. Google Scholar

[57]

A. Sarria and R. Saxton, Blow-up of solutions to the generalized inviscid Proudman-Johnson equation,, J. Math Fluid Mech., 15 (2013), 493. doi: 10.1007/s00021-012-0126-x. Google Scholar

[58]

A. Sarria and R. Saxton, The role of initial curvature in solutions to the generalized inviscid Proudman-Johnson equation,, Q. Appl. Math., (). Google Scholar

[59]

A. Sarria, Regularity of stagnation point-form solutions of the two-dimensional Euler equations,, Differential and Integral Equations, (). Google Scholar

[60]

A. Sarria and J. Wu, Blowup in stagnation-point form solutions of the inviscid 2d Boussinesq equations, submitted,, preprint, (). Google Scholar

[61]

R. Saxton and F. Tiglay, Global existence of some infinite energy solutions for a perfect incompressible fluid,, SIAM J. Math. Anal., 40 (2008), 1499. doi: 10.1137/080713768. Google Scholar

[62]

F. Tiglay, The periodic Cauchy problem of the modified Hunter-Saxton equation,, J. Evol. Eq., 5 (2005), 509. doi: 10.1007/s00028-005-0215-x. Google Scholar

[63]

H. Weyl, On the differential equations of the simplest boundary-layer problems,, Ann. Math., 43 (1942), 381. doi: 10.2307/1968875. Google Scholar

[64]

H. Wu and M. Wunsch, Global existence for the generalized two-component Hunter-Saxton system,, J. Math. Fluid Mech., 14 (2012), 455. doi: 10.1007/s00021-011-0075-9. Google Scholar

[65]

M. Wunsch, The generalized Proudman-Johnson equation revisited,, J. Math. Fluid Mech., 13 (2011), 147. doi: 10.1007/s00021-009-0004-3. Google Scholar

[66]

M. Wunsch, On the Hunter-Saxton system,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 647. doi: 10.3934/dcdsb.2009.12.647. Google Scholar

[67]

M. Wunsch, The generalized Hunter-Saxton system,, SIAM J. Math. Anal., 42 (2010), 1286. doi: 10.1137/090768576. Google Scholar

[68]

M. Wunsch, Weak geodesic flow on a semidirect product and global solutions to the periodic Hunter-Saxton system,, Nonlinear Anal-Theor., 74 (2011), 4951. doi: 10.1016/j.na.2011.04.041. Google Scholar

[69]

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation,, SIAM J. Math. Anal., 36 (2004), 272. doi: 10.1137/S0036141003425672. Google Scholar

[70]

P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, Int. Math. Res. Notices, (2010), 1981. doi: 10.1093/imrn/rnp211. Google Scholar

[1]

Min Li, Zhaoyang Yin. Blow-up phenomena and travelling wave solutions to the periodic integrable dispersive Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6471-6485. doi: 10.3934/dcds.2017280

[2]

Jaeho Choi, Nitin Krishna, Nicole Magill, Alejandro Sarria. On the $ L^p $ regularity of solutions to the generalized Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-17. doi: 10.3934/dcdsb.2019142

[3]

Jonatan Lenells. Weak geodesic flow and global solutions of the Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 643-656. doi: 10.3934/dcds.2007.18.643

[4]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[5]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[6]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

[7]

Jibin Li. Bifurcations and exact travelling wave solutions of the generalized two-component Hunter-Saxton system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1719-1729. doi: 10.3934/dcdsb.2014.19.1719

[8]

Jingqun Wang, Lixin Tian, Weiwei Guo. Global exact controllability and asympotic stabilization of the periodic two-component $\mu\rho$-Hunter-Saxton system. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2129-2148. doi: 10.3934/dcdss.2016088

[9]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[10]

Marcus Wunsch. On the Hunter--Saxton system. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 647-656. doi: 10.3934/dcdsb.2009.12.647

[11]

Akmel Dé Godefroy. Existence, decay and blow-up for solutions to the sixth-order generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 117-137. doi: 10.3934/dcds.2015.35.117

[12]

Lili Du, Chunlai Mu, Zhaoyin Xiang. Global existence and blow-up to a reaction-diffusion system with nonlinear memory. Communications on Pure & Applied Analysis, 2005, 4 (4) : 721-733. doi: 10.3934/cpaa.2005.4.721

[13]

Shu-Xiang Huang, Fu-Cai Li, Chun-Hong Xie. Global existence and blow-up of solutions to a nonlocal reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2003, 9 (6) : 1519-1532. doi: 10.3934/dcds.2003.9.1519

[14]

Bin Li. On the blow-up criterion and global existence of a nonlinear PDE system in biological transport networks. Kinetic & Related Models, 2019, 12 (5) : 1131-1162. doi: 10.3934/krm.2019043

[15]

Shuyin Wu, Joachim Escher, Zhaoyang Yin. Global existence and blow-up phenomena for a weakly dissipative Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 633-645. doi: 10.3934/dcdsb.2009.12.633

[16]

Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058

[17]

Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-18. doi: 10.3934/dcdsb.2019169

[18]

María J. Cáceres, Ricarda Schneider. Blow-up, steady states and long time behaviour of excitatory-inhibitory nonlinear neuron models. Kinetic & Related Models, 2017, 10 (3) : 587-612. doi: 10.3934/krm.2017024

[19]

Guangyu Xu, Jun Zhou. Global existence and blow-up of solutions to a singular Non-Newton polytropic filtration equation with critical and supercritical initial energy. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1805-1820. doi: 10.3934/cpaa.2018086

[20]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]