- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Boundary layer separation of 2-D incompressible Dirichlet flows
Optimal harvesting for a stochastic N-dimensional competitive Lotka-Volterra model with jumps
1. | Department of Mathematics, Harbin Institute of Technology, Weihai 264209 |
2. | Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209 |
References:
[1] |
L. H. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation,, Math Biosci., 152 (1998), 63.
doi: 10.1016/S0025-5564(98)10018-4. |
[2] |
V. S. Anishchenko, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments,, Springer-Verlag, (2007).
|
[3] |
D. Applebaum, Lévy Processes and Stochastics Calculus,, Cambridge University Press, (2009).
doi: 10.1017/CBO9780511809781. |
[4] |
L. Arnold, Stochastic Differential Equations: Theory and Applications,, Wiley, (1974).
|
[5] |
L. Arnold, Random Dynamical Systems,, Springer, (1998).
doi: 10.1007/978-3-662-12878-7. |
[6] |
J. Bao, X. Mao,G. Yin and C. Yuan, Competitive lotka-volterra population dynamics with jumps,, Nonlinear Anal., 74 (2011), 6601.
doi: 10.1016/j.na.2011.06.043. |
[7] |
J. Bao and C. Yuan, Stochastic population dtnamics driven by lévy noise,, J. Math. Anal. Appl., 391 (2012), 363.
doi: 10.1016/j.jmaa.2012.02.043. |
[8] |
I. Barbalat, Systemes d'équations différentielles d'oscillations non linéaires,, Rev. Math. Pures. Appl., 4 (1959), 267.
|
[9] |
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment,, Science, 197 (1977), 463.
doi: 10.1126/science.197.4302.463. |
[10] |
J. X. Chen, C. H. Yu and L. Jin, Mathematical Analysis,, Higher Education Press, (2004). Google Scholar |
[11] |
C. Chiarella, X. He, D. Wang and M. Zheng, The stochastic bifurcation behaviour of speculative financial markets,, Physica A., 387 (2008), 3837.
doi: 10.1016/j.physa.2008.01.078. |
[12] |
C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewal Resources,, John Wiley and Sons Inc., (1990).
|
[13] |
H. Crauel and M. Gundlach, Stochastic Dynamics,, Springer-Verlag, (1999).
doi: 10.1007/b97846. |
[14] |
T. C. Gard, Persistence in stochastic food web models,, Bull. Math. Biol., 46 (1984), 357.
doi: 10.1007/BF02462011. |
[15] |
T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Anal., 10 (1986), 1411.
doi: 10.1016/0362-546X(86)90111-2. |
[16] |
G. Hu and K. Wang, Stability in distribution of competitive lotka-volterra system with markovian switching,, Appl. Math. Model., 35 (2011), 3189.
doi: 10.1016/j.apm.2010.12.025. |
[17] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,, Amsterdam, (1981).
|
[18] |
D. Jiang, C. Ji, X. Li and D. O'Regan, Analysis of autonomous lotka-volterra competition system with random perturbation,, J. Math. Anal. Appl., 390 (2012), 582.
doi: 10.1016/j.jmaa.2011.12.049. |
[19] |
F. C. Klebaner, Introduction to Stochastic Calculus With Applications,, Imperial College Press, (2005).
doi: 10.1142/p386. |
[20] |
H. Kunita, Itô's stochastic calculus: Its surprising power for applications,, Stochastic Process. Appl., 120 (2010), 622.
doi: 10.1016/j.spa.2010.01.013. |
[21] |
W. Li, K. Wang and H. Su, Optimal harvesting policy for stochastic logistic population model,, Appl. Math. Comput., 218 (2011), 157.
doi: 10.1016/j.amc.2011.05.079. |
[22] |
X. Li, D. Jiang and X. Mao, Population dynamical behavior of lotka-volterra system under regime switching,, J. Comput. Appl. Math., 232 (2009), 427.
doi: 10.1016/j.cam.2009.06.021. |
[23] |
X. Li and X. Mao, Population dynamical behavior of non-autonomous lotka-volterra competitive system with random perturbation,, Discret. Contin. Dyn. S., 24 (2009), 523.
doi: 10.3934/dcds.2009.24.523. |
[24] |
R. S. Liptser, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217.
doi: 10.1080/17442508008833146. |
[25] |
A. J. Lotka, Elements of Physical Biology,, William and Wilkins, (1925). Google Scholar |
[26] |
E. M. Lungu and B. Øksendal, Optimal harvesting from a population in a stochastic crowded environment,, Math. Biosci., 145 (1997), 47.
doi: 10.1016/S0025-5564(97)00029-1. |
[27] |
X. Mao, Stochastic Differential Equations and Applications,, Horwood, (1997).
doi: 10.1533/9780857099402. |
[28] |
X. Mao, Stationary distribution of stochastic population systems,, Syst. Control Letters, 60 (2011), 398.
doi: 10.1016/j.sysconle.2011.02.013. |
[29] |
X. Mao, G. Marion and E. Renshaw, Environmental brownian noise suppresses explosions in populations dynamics,, Stochastic Process. Appl., 97 (2002), 95.
doi: 10.1016/S0304-4149(01)00126-0. |
[30] |
X. Mao, S. Sabanis and E. Renshaw, Asymptotic behavior of the stochastic lotka-volterra model,, J. Math. Anal. Appl., 287 (2003), 141.
doi: 10.1016/S0022-247X(03)00539-0. |
[31] |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).
doi: 10.1142/p473. |
[32] |
R. M. May, Stability and Complexity in Model Ecosystems,, Princeton University Press, (2001). Google Scholar |
[33] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, (2003).
doi: 10.1007/978-3-642-14394-6. |
[34] |
S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations,, Stochastic Process. Appl., 116 (2006), 370.
doi: 10.1016/j.spa.2005.08.004. |
[35] |
D. Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996).
doi: 10.1017/CBO9780511662829. |
[36] |
M. A. Shah and U. Sharma, Optimal harvesting policies for a generalized gordon-schaefer model in randomly varying environment,, Appl. Stochastic Models Bus. Ind., 19 (2003), 43.
doi: 10.1002/asmb.490. |
[37] |
R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering,, Springer, (2005).
|
[38] |
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi,, Mem. Acad. Lincei, 2 (1926), 31. Google Scholar |
[39] |
K. Wang, Stochastic Biomathematics Models,, Science Press, (2010). Google Scholar |
[40] |
C. Zhu and G. Yin, On competitive lotka-volterra model in random environments,, J. Math. Anal. Appl., 357 (2009), 154.
doi: 10.1016/j.jmaa.2009.03.066. |
[41] |
C. Zhu and G. Yin, On hybrid competitive lotka-volterra ecosystems,, Nonlinear Anal., 71 (2009).
doi: 10.1016/j.na.2009.01.166. |
[42] |
X. Zou and K. Wang, Numerical simulations and modeling for stochastic biological systems with jumps,, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1557.
doi: 10.1016/j.cnsns.2013.09.010. |
show all references
References:
[1] |
L. H. Alvarez, Optimal harvesting under stochastic fluctuations and critical depensation,, Math Biosci., 152 (1998), 63.
doi: 10.1016/S0025-5564(98)10018-4. |
[2] |
V. S. Anishchenko, Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments,, Springer-Verlag, (2007).
|
[3] |
D. Applebaum, Lévy Processes and Stochastics Calculus,, Cambridge University Press, (2009).
doi: 10.1017/CBO9780511809781. |
[4] |
L. Arnold, Stochastic Differential Equations: Theory and Applications,, Wiley, (1974).
|
[5] |
L. Arnold, Random Dynamical Systems,, Springer, (1998).
doi: 10.1007/978-3-662-12878-7. |
[6] |
J. Bao, X. Mao,G. Yin and C. Yuan, Competitive lotka-volterra population dynamics with jumps,, Nonlinear Anal., 74 (2011), 6601.
doi: 10.1016/j.na.2011.06.043. |
[7] |
J. Bao and C. Yuan, Stochastic population dtnamics driven by lévy noise,, J. Math. Anal. Appl., 391 (2012), 363.
doi: 10.1016/j.jmaa.2012.02.043. |
[8] |
I. Barbalat, Systemes d'équations différentielles d'oscillations non linéaires,, Rev. Math. Pures. Appl., 4 (1959), 267.
|
[9] |
J. R. Beddington and R. M. May, Harvesting natural populations in a randomly fluctuating environment,, Science, 197 (1977), 463.
doi: 10.1126/science.197.4302.463. |
[10] |
J. X. Chen, C. H. Yu and L. Jin, Mathematical Analysis,, Higher Education Press, (2004). Google Scholar |
[11] |
C. Chiarella, X. He, D. Wang and M. Zheng, The stochastic bifurcation behaviour of speculative financial markets,, Physica A., 387 (2008), 3837.
doi: 10.1016/j.physa.2008.01.078. |
[12] |
C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewal Resources,, John Wiley and Sons Inc., (1990).
|
[13] |
H. Crauel and M. Gundlach, Stochastic Dynamics,, Springer-Verlag, (1999).
doi: 10.1007/b97846. |
[14] |
T. C. Gard, Persistence in stochastic food web models,, Bull. Math. Biol., 46 (1984), 357.
doi: 10.1007/BF02462011. |
[15] |
T. C. Gard, Stability for multispecies population models in random environments,, Nonlinear Anal., 10 (1986), 1411.
doi: 10.1016/0362-546X(86)90111-2. |
[16] |
G. Hu and K. Wang, Stability in distribution of competitive lotka-volterra system with markovian switching,, Appl. Math. Model., 35 (2011), 3189.
doi: 10.1016/j.apm.2010.12.025. |
[17] |
N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes,, Amsterdam, (1981).
|
[18] |
D. Jiang, C. Ji, X. Li and D. O'Regan, Analysis of autonomous lotka-volterra competition system with random perturbation,, J. Math. Anal. Appl., 390 (2012), 582.
doi: 10.1016/j.jmaa.2011.12.049. |
[19] |
F. C. Klebaner, Introduction to Stochastic Calculus With Applications,, Imperial College Press, (2005).
doi: 10.1142/p386. |
[20] |
H. Kunita, Itô's stochastic calculus: Its surprising power for applications,, Stochastic Process. Appl., 120 (2010), 622.
doi: 10.1016/j.spa.2010.01.013. |
[21] |
W. Li, K. Wang and H. Su, Optimal harvesting policy for stochastic logistic population model,, Appl. Math. Comput., 218 (2011), 157.
doi: 10.1016/j.amc.2011.05.079. |
[22] |
X. Li, D. Jiang and X. Mao, Population dynamical behavior of lotka-volterra system under regime switching,, J. Comput. Appl. Math., 232 (2009), 427.
doi: 10.1016/j.cam.2009.06.021. |
[23] |
X. Li and X. Mao, Population dynamical behavior of non-autonomous lotka-volterra competitive system with random perturbation,, Discret. Contin. Dyn. S., 24 (2009), 523.
doi: 10.3934/dcds.2009.24.523. |
[24] |
R. S. Liptser, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217.
doi: 10.1080/17442508008833146. |
[25] |
A. J. Lotka, Elements of Physical Biology,, William and Wilkins, (1925). Google Scholar |
[26] |
E. M. Lungu and B. Øksendal, Optimal harvesting from a population in a stochastic crowded environment,, Math. Biosci., 145 (1997), 47.
doi: 10.1016/S0025-5564(97)00029-1. |
[27] |
X. Mao, Stochastic Differential Equations and Applications,, Horwood, (1997).
doi: 10.1533/9780857099402. |
[28] |
X. Mao, Stationary distribution of stochastic population systems,, Syst. Control Letters, 60 (2011), 398.
doi: 10.1016/j.sysconle.2011.02.013. |
[29] |
X. Mao, G. Marion and E. Renshaw, Environmental brownian noise suppresses explosions in populations dynamics,, Stochastic Process. Appl., 97 (2002), 95.
doi: 10.1016/S0304-4149(01)00126-0. |
[30] |
X. Mao, S. Sabanis and E. Renshaw, Asymptotic behavior of the stochastic lotka-volterra model,, J. Math. Anal. Appl., 287 (2003), 141.
doi: 10.1016/S0022-247X(03)00539-0. |
[31] |
X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching,, Imperial College Press, (2006).
doi: 10.1142/p473. |
[32] |
R. M. May, Stability and Complexity in Model Ecosystems,, Princeton University Press, (2001). Google Scholar |
[33] |
B. Øksendal, Stochastic Differential Equations: An Introduction with Applications,, Springer, (2003).
doi: 10.1007/978-3-642-14394-6. |
[34] |
S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations,, Stochastic Process. Appl., 116 (2006), 370.
doi: 10.1016/j.spa.2005.08.004. |
[35] |
D. Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems,, Cambridge University Press, (1996).
doi: 10.1017/CBO9780511662829. |
[36] |
M. A. Shah and U. Sharma, Optimal harvesting policies for a generalized gordon-schaefer model in randomly varying environment,, Appl. Stochastic Models Bus. Ind., 19 (2003), 43.
doi: 10.1002/asmb.490. |
[37] |
R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications: Mathematical and Analytical Techniques with Applications to Engineering,, Springer, (2005).
|
[38] |
V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie d'animali conviventi,, Mem. Acad. Lincei, 2 (1926), 31. Google Scholar |
[39] |
K. Wang, Stochastic Biomathematics Models,, Science Press, (2010). Google Scholar |
[40] |
C. Zhu and G. Yin, On competitive lotka-volterra model in random environments,, J. Math. Anal. Appl., 357 (2009), 154.
doi: 10.1016/j.jmaa.2009.03.066. |
[41] |
C. Zhu and G. Yin, On hybrid competitive lotka-volterra ecosystems,, Nonlinear Anal., 71 (2009).
doi: 10.1016/j.na.2009.01.166. |
[42] |
X. Zou and K. Wang, Numerical simulations and modeling for stochastic biological systems with jumps,, Commun. Nonlinear Sci. Numer. Simulat., 19 (2014), 1557.
doi: 10.1016/j.cnsns.2013.09.010. |
[1] |
Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021014 |
[2] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[3] |
Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495 |
[4] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[5] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[6] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[7] |
Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037 |
[8] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[9] |
Yu Yuan, Zhibin Liang, Xia Han. Optimal investment and reinsurance to minimize the probability of drawdown with borrowing costs. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021003 |
[10] |
Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005 |
[11] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[12] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[13] |
Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020366 |
[14] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[15] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[16] |
Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004 |
[17] |
Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020033 |
[18] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[19] |
Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021004 |
[20] |
Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329 |
2019 Impact Factor: 1.27
Tools
Metrics
Other articles
by authors
[Back to Top]