Citation: |
[1] |
E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Stability of gradient semigroups under perturbation, Nonlinearity, 24 (2011), 2099-2117.doi: 10.1088/0951-7715/24/7/010. |
[2] |
E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Continuity of Lyapunov functions and of energy level for a generalized gradient system, Topological Methods Nonl. Anal., 39 (2012), 57-82. |
[3] |
E. R. Aragão-Costa, T. Caraballo, A. N. Carvalho and J. A. Langa, Non-autonomous Morse decomposition and Lyapunov functions for dynamically gradient processes, Trans. Amer. Math. Soc., 365 (2013), 5277-5312.doi: 10.1090/S0002-9947-2013-05810-2. |
[4] |
L. Arnold, Random Dynamical Systems, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-662-12878-7. |
[5] |
J. Arrieta and A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285-310.doi: 10.1090/S0002-9947-99-02528-3. |
[6] |
A. V. Babin and M. Vishik, Regular attractors of semigroups and evolution equations, J. Math. Pures Appl., 62 (1983), 441-491. |
[7] |
A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992. |
[8] |
M. C. Bortolan, T. Caraballo, A. N. Carvalho and J. A. Langa, Skew-product flows and Morse decomposition, J. Diff. Equations, 255 (2013), 2436-2462.doi: 10.1016/j.jde.2013.06.023. |
[9] |
M. C. Bortolan, A. N. Carvalho, J. A. Langa and G. Raugel, Non-autonomous perturbations of Morse-Smale semigroups: Stability of the phase diagram, preprint. |
[10] |
M. C. Bortolan, A. N. Carvalho, J. A. Langa, Structural stability of skew-product semiflows, J. Diff. Equations, 257 (2014), 490-522.doi: 10.1016/j.jde.2014.04.008. |
[11] |
T. Caraballo and J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamical systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10 (2003), 491-513. |
[12] |
T. Caraballo, J. A. Langa and J. C. Robinson, Upper semicontinuty of attractors for small random perturbations of dynamical systems, Comm. Partial Diff. Eq., 23 (1998), 1557-1581.doi: 10.1080/03605309808821394. |
[13] |
T. Caraballo, J. C. Jara, J. A. Langa and Z. Liu, Morse decomposition of attractors for non-autonomous dynamical systems, Advanced Nonlinear Studies, 13 (2013), 309-329. |
[14] |
A. N. Carvalho and J. A. Langa, The existence and continuity of stable and unstable manifolds for semilinear problems under non-autonomous perturbation in Banach spaces, J. Diff. Eq., 233 (2007), 622-653.doi: 10.1016/j.jde.2006.08.009. |
[15] |
A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Diff. Eq., 246 (2009), 2646-2668.doi: 10.1016/j.jde.2009.01.007. |
[16] |
A. N. Carvalho, J. A. Langa, J. C. Robinson and A. Suárez, Characterization of non-autonomous attractors of a perturbed gradient system, J. Diff. Eq., 236 (2007), 570-603.doi: 10.1016/j.jde.2007.01.017. |
[17] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Lower semi-continuity of attractors for non-autonomous dynamical systems, Erg. Th. Dyn. Sys., 29 (2009), 1765-1780. |
[18] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, On the continuity of pullback attractors for evolution processes, Nonlin. Anal., 71 (2009), 1812-1824.doi: 10.1016/j.na.2009.01.016. |
[19] |
A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013.doi: 10.1007/978-1-4614-4581-4. |
[20] |
A. N. Carvalho and S. Piskarev, A general approximation scheme for attractors of abstract parabolic problems, Numer. Funct. Anal. Optim., 27 (2006), 785-829.doi: 10.1080/01630560600882723. |
[21] |
V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333. |
[22] |
V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002. |
[23] |
C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conference Series in Mathematics Vol. 38, American Mathematical Society, Providence, R.I., 1978. |
[24] |
H. Crauel and F. Flandoli, Attractors for random dynamical systems, Prob. Th. Rel. Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705. |
[25] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys and Monographs, Amer. Math. Soc., Providence, 1988. |
[26] |
J. K. Hale, X. B. Lin and G. Raugel, Upper semicontinuity of attractors for approximations of semigroups and partial differential equations, Math. Comp., 50 (1988), 89-123.doi: 10.1090/S0025-5718-1988-0917820-X. |
[27] |
J. K. Hale and G. Raugel, Lower semi-continuity of attractors of gradient systems and applications, Ann. Mat. Pura Appl., 154 (1989), 281-326.doi: 10.1007/BF01790353. |
[28] |
J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc., 329 (1992), 185-219.doi: 10.1090/S0002-9947-1992-1040261-1. |
[29] |
J. K. Hale and G. Raugel, Convergence in dynamically gradient systems with applications to PDE, Z. Angew. Math. Phys., 43 (1992), 63-124. |
[30] |
J. K. Hale, L. T. Magalhães and W. M. Oliva, An Introduction to Infinite-Dimensional Dynamical Systems - Geometric Theory, Applied Mathematical Sciences, 47, Springer-Verlag, New York, 1984.doi: 10.1007/0-387-22896-9_9. |
[31] |
A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Masson, Paris, 1991. |
[32] |
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin-New York, 1981. |
[33] |
D. Henry, Semigroups, Handwritten Notes, IME-USP, São Paulo SP, Brazil, 1981. |
[34] |
D. Henry, Perturbation of the Boundary in Boundary-Valued Problems of Partial Differential Equations, London Mathematical Society Lecture Note Series, 318, Cambridge University Press, Cambridge, 2005.doi: 10.1017/CBO9780511546730. |
[35] |
P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011.doi: 10.1090/surv/176. |
[36] |
J. Palis Jr., Introdução aos Sistemas Dinâmicos, IMPA, 1977. |
[37] |
O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge, 1991.doi: 10.1017/CBO9780511569418. |
[38] |
J. A. Langa, J. C. Robinson, A. Suárez and A. Vidal-López, The stability of attractors for non-autonomous perturbations of gradient-like systems, J. Diff. Eq., 234 (2007), 607-625.doi: 10.1016/j.jde.2006.11.016. |
[39] |
K. Lu, Structural stability for scalar parabolic equations, J. Diff. Eq., 114 (1994), 253-271.doi: 10.1006/jdeq.1994.1150. |
[40] |
K. Mischaikow, H. Smith and H. R. Thieme, Asymptotically autonomous semiflows: Chain recurrent and Lyapunov functions, Trans. Amer. Math. Soc., 347 (1995), 1669-1685.doi: 10.1090/S0002-9947-1995-1290727-7. |
[41] |
J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0. |
[42] |
K. P. Rybakowski, The Homotopy Index and Partial Differential Equations, Universitext, Springer-Verlag, Berlin, 1987.doi: 10.1007/978-3-642-72833-4. |
[43] |
G. R. Sell, Nonautonomous differential equations and dynamical systems, Trans. Amer. Math. Soc., 127 (1967), 241-262. |
[44] |
G. R. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971. |
[45] |
G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, Vol. 143, Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4757-5037-9. |
[46] |
B. Schmalfuß, Backward cocycles and attractors of stochastic differential equations, in International Seminar on Applied Mathematics - Nonlinear Dynamics: Attractor Approximation and Global Behaviour (eds. V. Reitmann, T. Riedrich and N. Koksch), Technische Universität, Dresden, 1992, 185-192. |
[47] |
A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, England, 1996. |
[48] |
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988.doi: 10.1007/978-1-4684-0313-8. |
[49] |
M. I. Vishik, Asymptotic Behaviour of Solutions of Evolutionary Equations, Cambridge University Press, Cambridge, 1992. |