\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pullback attractors for generalized evolutionary systems

Abstract Related Papers Cited by
  • We give an abstract framework for studying nonautonomous PDEs, called a generalized evolutionary system. In this setting, we define the notion of a pullback attractor. Moreover, we show that the pullback attractor, in the weak sense, must always exist. We then study the structure of these attractors and the existence of a strong pullback attractor. We then apply our framework to both autonomous and nonautonomous evolutionary systems as they first appeared in earlier works by Cheskidov, Foias, and Lu. In this con- text, we compare the pullback attractor to both the global attractor (in the autonomous case) and the uniform attractor (in the nonautonomous case). Finally, we apply our results to the nonautonomous 3D Navier-Stokes equations on a periodic domain with a translationally bounded force. We show that the Leray-Hopf weak solutions form a generalized evolutionary system and must then have a weak pullback attractor.
    Mathematics Subject Classification: 35Q30, 37B55, 37D45, 37L05, 37N10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7 (1997), 475-502.doi: 10.1007/s003329900037.

    [2]

    T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201.doi: 10.1023/A:1022902802385.

    [3]

    T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour, Set-Valued Anal., 11 (2003), 297-322.doi: 10.1023/A:1024422619616.

    [4]

    A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013.doi: 10.1007/978-1-4614-4581-4.

    [5]

    D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, Interdisciplinary Mathematical Sciences, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004.doi: 10.1142/9789812563088.

    [6]

    V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations, Indiana Univ. Math. J., 42 (1993), 1057-1076.doi: 10.1512/iumj.1993.42.42049.

    [7]

    V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. (9), 73 (1994), 279-333.

    [8]

    V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics, American Mathematical Society Colloquium Publications, 49, American Mathematical Society, Providence, RI, 2002.

    [9]

    A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations, J. Differential Equations, 231 (2006), 714-754.doi: 10.1016/j.jde.2006.08.021.

    [10]

    A. Cheskidov and S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations, Adv. Math., 267 (2014), 277-306.doi: 10.1016/j.aim.2014.09.005.

    [11]

    A. Cheskidov, Global attractors of evolutionary systems, J. Dynam. Differential Equations, 21 (2009), 249-268.doi: 10.1007/s10884-009-9133-x.

    [12]

    A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55-66.doi: 10.3934/dcdss.2009.2.55.

    [13]

    P. Constantin and C. Foias, Navier-Stokes Equations, Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.

    [14]

    H. Crauel and F. Flandoli, Attractors for random dynamical systems, Probab. Theory Related Fields, 100 (1994), 365-393.doi: 10.1007/BF01193705.

    [15]

    F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force, J. Dynam. Differential Equations, 11 (1999), 355-398.doi: 10.1023/A:1021937715194.

    [16]

    C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory, in Directions in Partial Differential Equations (Madison, WI, 1985), Publ. Math. Res. Center Univ. Wisconsin, 54, Academic Press, Boston, MA, 1987, 55-73.

    [17]

    A. Haraux, Systèmes Dynamiques Dissipatifs et Applications, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], 17, Masson, Paris, 1991.

    [18]

    A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system, J. Differential Equations, 240 (2007), 249-278.doi: 10.1016/j.jde.2007.06.008.

    [19]

    P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011.doi: 10.1090/surv/176.

    [20]

    P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization, Dynamical Numerical Analysis (Atlanta, GA, 1995), Numer. Algorithms, 14 (1997), 141-152.doi: 10.1023/A:1019156812251.

    [21]

    P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC Research Notes in Mathematics, 431, Chapman & Hall/CRC, Boca Raton, FL, 2002.doi: 10.1201/9781420035674.

    [22]

    S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces, Discrete Contin. Dyn. Syst., 13 (2005), 701-719.doi: 10.3934/dcds.2005.13.701.

    [23]

    V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.doi: 10.1023/A:1008608431399.

    [24]

    J. C. Robinson, Infinite-dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2001.doi: 10.1007/978-94-010-0732-0.

    [25]

    R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations, J. Differential Equations, 229 (2006), 257-269.doi: 10.1016/j.jde.2006.03.004.

    [26]

    G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations, J. Dynam. Differential Equations, 8 (1996), 1-33.doi: 10.1007/BF02218613.

    [27]

    G. R. Sell and Y. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.doi: 10.1007/978-1-4757-5037-9.

    [28]

    R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001.

    [29]

    M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes system, Mat. Zametki, 71 (2002), 194-213.doi: 10.1023/A:1014190629738.

    [30]

    D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force, J. Differential Equations, 251 (2011), 2209-2225.doi: 10.1016/j.jde.2011.07.008.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return