May  2015, 20(3): 749-779. doi: 10.3934/dcdsb.2015.20.749

Pullback attractors for generalized evolutionary systems

1. 

Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 322 Science and Engineering Offices (M/C 249), 851 S. Morgan Street, Chicago, Illinois 60607-7045, United States, United States

Received  December 2013 Revised  March 2014 Published  January 2015

We give an abstract framework for studying nonautonomous PDEs, called a generalized evolutionary system. In this setting, we define the notion of a pullback attractor. Moreover, we show that the pullback attractor, in the weak sense, must always exist. We then study the structure of these attractors and the existence of a strong pullback attractor. We then apply our framework to both autonomous and nonautonomous evolutionary systems as they first appeared in earlier works by Cheskidov, Foias, and Lu. In this con- text, we compare the pullback attractor to both the global attractor (in the autonomous case) and the uniform attractor (in the nonautonomous case). Finally, we apply our results to the nonautonomous 3D Navier-Stokes equations on a periodic domain with a translationally bounded force. We show that the Leray-Hopf weak solutions form a generalized evolutionary system and must then have a weak pullback attractor.
Citation: Alexey Cheskidov, Landon Kavlie. Pullback attractors for generalized evolutionary systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 749-779. doi: 10.3934/dcdsb.2015.20.749
References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonlinear Sci., 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[2]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Anal., 11 (2003), 153.  doi: 10.1023/A:1022902802385.  Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.  doi: 10.1023/A:1024422619616.  Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems,, Interdisciplinary Mathematical Sciences, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations,, Indiana Univ. Math. J., 42 (1993), 1057.  doi: 10.1512/iumj.1993.42.42049.  Google Scholar

[7]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension,, J. Math. Pures Appl. (9), 73 (1994), 279.   Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[9]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations,, J. Differential Equations, 231 (2006), 714.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[10]

A. Cheskidov and S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations,, Adv. Math., 267 (2014), 277.  doi: 10.1016/j.aim.2014.09.005.  Google Scholar

[11]

A. Cheskidov, Global attractors of evolutionary systems,, J. Dynam. Differential Equations, 21 (2009), 249.  doi: 10.1007/s10884-009-9133-x.  Google Scholar

[12]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55.  doi: 10.3934/dcdss.2009.2.55.  Google Scholar

[13]

P. Constantin and C. Foias, Navier-Stokes Equations,, Chicago Lectures in Mathematics. University of Chicago Press, (1988).   Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[15]

F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force,, J. Dynam. Differential Equations, 11 (1999), 355.  doi: 10.1023/A:1021937715194.  Google Scholar

[16]

C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory,, in Directions in Partial Differential Equations (Madison, (1985), 55.   Google Scholar

[17]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1991).   Google Scholar

[18]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system,, J. Differential Equations, 240 (2007), 249.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[19]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[20]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Dynamical Numerical Analysis (Atlanta, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[21]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hall/CRC Research Notes in Mathematics, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[22]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[23]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[24]

J. C. Robinson, Infinite-dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractors,, Cambridge Texts in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[25]

R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations,, J. Differential Equations, 229 (2006), 257.  doi: 10.1016/j.jde.2006.03.004.  Google Scholar

[26]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations,, J. Dynam. Differential Equations, 8 (1996), 1.  doi: 10.1007/BF02218613.  Google Scholar

[27]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[28]

R. Temam, Navier-Stokes Equations,, Theory and Numerical Analysis, (1984).   Google Scholar

[29]

M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes system,, Mat. Zametki, 71 (2002), 194.  doi: 10.1023/A:1014190629738.  Google Scholar

[30]

D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force,, J. Differential Equations, 251 (2011), 2209.  doi: 10.1016/j.jde.2011.07.008.  Google Scholar

show all references

References:
[1]

J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations,, J. Nonlinear Sci., 7 (1997), 475.  doi: 10.1007/s003329900037.  Google Scholar

[2]

T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero, Pullback attractors of nonautonomous and stochastic multivalued dynamical systems,, Set-Valued Anal., 11 (2003), 153.  doi: 10.1023/A:1022902802385.  Google Scholar

[3]

T. Caraballo, P. Marín-Rubio and J. C. Robinson, A comparison between two theories for multi-valued semiflows and their asymptotic behaviour,, Set-Valued Anal., 11 (2003), 297.  doi: 10.1023/A:1024422619616.  Google Scholar

[4]

A. N. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems,, Interdisciplinary Mathematical Sciences, (2004).  doi: 10.1142/9789812563088.  Google Scholar

[6]

V. Chepyzhov and M. Vishik, A Hausdorff dimension estimate for kernel sections of nonautonomous evolution equations,, Indiana Univ. Math. J., 42 (1993), 1057.  doi: 10.1512/iumj.1993.42.42049.  Google Scholar

[7]

V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension,, J. Math. Pures Appl. (9), 73 (1994), 279.   Google Scholar

[8]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[9]

A. Cheskidov and C. Foias, On global attractors of the 3D Navier-Stokes equations,, J. Differential Equations, 231 (2006), 714.  doi: 10.1016/j.jde.2006.08.021.  Google Scholar

[10]

A. Cheskidov and S. Lu, Uniform global attractors for the nonautonomous 3D Navier-Stokes equations,, Adv. Math., 267 (2014), 277.  doi: 10.1016/j.aim.2014.09.005.  Google Scholar

[11]

A. Cheskidov, Global attractors of evolutionary systems,, J. Dynam. Differential Equations, 21 (2009), 249.  doi: 10.1007/s10884-009-9133-x.  Google Scholar

[12]

A. Cheskidov and S. Lu, The existence and the structure of uniform global attractors for nonautonomous reaction-diffusion systems without uniqueness,, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 55.  doi: 10.3934/dcdss.2009.2.55.  Google Scholar

[13]

P. Constantin and C. Foias, Navier-Stokes Equations,, Chicago Lectures in Mathematics. University of Chicago Press, (1988).   Google Scholar

[14]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[15]

F. Flandoli and B. Schmalfuß, Weak solutions and attractors for three-dimensional Navier-Stokes equations with nonregular force,, J. Dynam. Differential Equations, 11 (1999), 355.  doi: 10.1023/A:1021937715194.  Google Scholar

[16]

C. Foias and R. Temam, The connection between the Navier-Stokes equations, dynamical systems, and turbulence theory,, in Directions in Partial Differential Equations (Madison, (1985), 55.   Google Scholar

[17]

A. Haraux, Systèmes Dynamiques Dissipatifs et Applications,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1991).   Google Scholar

[18]

A. V. Kapustyan and J. Valero, Weak and strong attractors for the 3D Navier-Stokes system,, J. Differential Equations, 240 (2007), 249.  doi: 10.1016/j.jde.2007.06.008.  Google Scholar

[19]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[20]

P. E. Kloeden and B. Schmalfuß, Nonautonomous systems, cocycle attractors and variable time-step discretization,, Dynamical Numerical Analysis (Atlanta, 14 (1997), 141.  doi: 10.1023/A:1019156812251.  Google Scholar

[21]

P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem,, Chapman & Hall/CRC Research Notes in Mathematics, (2002).  doi: 10.1201/9781420035674.  Google Scholar

[22]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[23]

V. S. Melnik and J. Valero, On attractors of multivalued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[24]

J. C. Robinson, Infinite-dimensional Dynamical Systems, An introduction to dissipative parabolic PDEs and the theory of global attractors,, Cambridge Texts in Applied Mathematics, (2001).  doi: 10.1007/978-94-010-0732-0.  Google Scholar

[25]

R. M. S. Rosa, Asymptotic regularity conditions for the strong convergence towards weak limit sets and weak attractors of the 3D Navier-Stokes equations,, J. Differential Equations, 229 (2006), 257.  doi: 10.1016/j.jde.2006.03.004.  Google Scholar

[26]

G. R. Sell, Global attractors for the three-dimensional Navier-Stokes equations,, J. Dynam. Differential Equations, 8 (1996), 1.  doi: 10.1007/BF02218613.  Google Scholar

[27]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Applied Mathematical Sciences, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[28]

R. Temam, Navier-Stokes Equations,, Theory and Numerical Analysis, (1984).   Google Scholar

[29]

M. I. Vishik and V. V. Chepyzhov, Trajectory and global attractors of the three-dimensional Navier-Stokes system,, Mat. Zametki, 71 (2002), 194.  doi: 10.1023/A:1014190629738.  Google Scholar

[30]

D. Vorotnikov, Asymptotic behavior of the non-autonomous 3D Navier-Stokes problem with coercive force,, J. Differential Equations, 251 (2011), 2209.  doi: 10.1016/j.jde.2011.07.008.  Google Scholar

[1]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[2]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[3]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[4]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[5]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]