Citation: |
[1] |
C. Bataillon, C. Chainais-Hillairet, C. Desgranges, E. Hoarau, F. Martin, S. Perrin, M. Turpin and J. Talandier, Corrosion modelling of iron based alloy in nuclear waste repository, Electrochimica Acta, 55 (2010), 4451-4467.doi: 10.1016/j.electacta.2010.02.087. |
[2] |
C. Bataillon, F. Bouchon, C. Chainais-Hillairet, J. Fuhrmann, E. Hoarau and R. Touzani, Numerical methods for the simulation of a corrosion model with moving oxide layer, Journal of Computational Physics, 231 (2012), 6213-6231.doi: 10.1016/j.jcp.2012.06.005. |
[3] |
F. Brezzi, L. D. Marini and P. Pietra, Numerical simulation of semiconductor devices, Comput. Methods Appl. Mech. Engrg., 75 (1989), 493-514.doi: 10.1016/0045-7825(89)90044-3. |
[4] |
C. Chainais-Hillairet and I. Lacroix-Violet, Existence of solutions for a steady state corrosion of steel model, Applied Math. Letters, 25 (2012), 1784-1789. |
[5] |
C. Chainais-Hillairet, J. G. Liu and Y. J. Peng, Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis, M2AN Math. Model. Numer. Anal., 37 (2003), 319-338.doi: 10.1051/m2an:2003028. |
[6] |
C. Chainais-Hillairet and Y. J. Peng, Convergence of a finite-volume scheme for the drift-diffusion equations in 1D, IMA J. Numer. Anal., 23 (2003), 81-108.doi: 10.1093/imanum/23.1.81. |
[7] |
F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New-York, 1984.doi: 10.1007/978-1-4757-5595-4. |
[8] |
Z. Chen and B. Cockburn, Analysis of a finite element method for the drift-diffusion semiconductor device equations: the multidimensional case, Numer. Math., 71 (1995), 1-28. |
[9] |
H. B. Da Veiga, On the semiconductor drift-diffusion equations, Differ. Int. Eqs., 9 (1996), 729-744. |
[10] |
M. Dreher and A. Jüngel, Compact families of piecewise constant functions in $L^p(0,T;B)$, Nonlinear Anal., 75 (2012), 3072-3077.doi: 10.1016/j.na.2011.12.004. |
[11] |
W. Fang and K. Ito, Global solutions of the time-dependent drift-diffusion semiconductor equations, J. Differential Equations, 123 (1995), 523-566. |
[12] |
H. Gajewski, On existence, uniqueness and asymptotic behaviour of solutions of the basic equations for carrier transport in semiconductors, ZAMM, 65 (1985), 101-108. |
[13] |
H. Gajewski, On the uniqueness of solutions to the drift-diffusion model of semiconductors devices, M3AS, 4 (1994), 121-133. |
[14] |
I. Gasser, The initial time layer problem and the quasineutral limit in a nonlinear drift diffusion model for semiconductors, NoDEA Nonlinear Differential Equations Appl., 8 (2001), 237-249. |
[15] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations Of Second Order, Springer Berlin, New-York, 1984. |
[16] |
A. Jüngel, On the existence and uniqueness of transient solutions of a degenerate nonlinear drift-diffusion model for semiconductors, M3AS, 4 (1994), 677-703. |
[17] |
A. Jüngel, A nonlinear drift-diffusion system with electric convection arising in electrophoretic and semiconductor modeling, Math. Nachr., 185 (1997), 85-110. |
[18] |
A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations and their Applications, 41, Birkhäuser Verlag, 2001.doi: 10.1007/978-3-0348-8334-4. |
[19] |
A. Jüngel and Y. J. Peng, A hierarchy of hydrodynamic models for plasmas. Zero-electron-mass limits in the drift-diffusion equations, Ann. Inst. H. Poincaré, 17 (2000), 83-118.doi: 10.1016/S0294-1449(99)00101-8. |
[20] |
A. Jüngel and Y. J. Peng, Rigorous derivation of a hierarchy of macroscopic models for semiconductors and plasmas, International Conference on Differential Equations, 1 (Berlin, 1999), World Sci. Publ., River Edge, NJ, 2000, 1325-1327. |
[21] |
A. Jüngel and I. Violet, The quasi-neutral limit in the quantum drift-diffusion equations, Asymptotic Analysis, 53 (2007), 139-157. |
[22] |
P. A. Markowich, The Stationary Semiconductor Device Equations, Computational Microelectronics, Springer-Verlag, 1986.doi: 10.1007/978-3-7091-3678-2. |
[23] |
P. A. Markowich, C. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, 1990.doi: 10.1007/978-3-7091-6961-2. |
[24] |
R. Sacco and F. Saleri, Mixed finite volume methods for semiconductor device simulation, Numer. Methods Partial Differential Equations, 13 (1997), 215-236. |
[25] |
D. L. Scharfetter and H. K. Gummel, Large signal analysis of a silicon read diode oscillator, IEEE Trans. Electron Dev., 16 (1969), 64-77.doi: 10.1109/T-ED.1969.16566. |
[26] |
C. Schmeiser, A singular perturbation analysis of reverse biased $pn$-junctions, SIAM J. Math. Anal., 21 (1990), 313-326.doi: 10.1137/0521017. |
[27] |
J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[28] |
W. Van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors, Bell System Tech. J., 29 (1950), 560-607. |