May  2015, 20(3): 781-810. doi: 10.3934/dcdsb.2015.20.781

Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces

1. 

Department of Mathematics, University of Surrey, Guildford, GU2 7XH

Received  April 2014 Revised  August 2014 Published  January 2015

We give a comprehensive study of strong uniform attractors of nonautonomous dissipative systems for the case where the external forces are not translation compact. We introduce several new classes of external forces that are not translation compact, but nevertheless allow the attraction in a strong topology of the phase space to be verified and discuss in a more detailed way the class of so-called normal external forces introduced before. We also develop a unified approach to verify the asymptotic compactness for such systems based on the energy method and apply it to a number of equations of mathematical physics including the Navier-Stokes equations, damped wave equations and reaction-diffusing equations in unbounded domains.
Citation: Sergey Zelik. Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 781-810. doi: 10.3934/dcdsb.2015.20.781
References:
[1]

C. Anh and N. Quang, Uniform attractors for nonautonomous parabolic equations involving weighted p-Laplacian operators,, Ann. Polon. Math., 98 (2010), 251.  doi: 10.4064/ap98-3-5.  Google Scholar

[2]

A. Babin and M. Vishik, Attractors of Evolutionary Equations,, North Holland, (1992).   Google Scholar

[3]

J. Ball, Global attractors for damped semilinear wave equations,, Discrete Contin. Dyn. Syst., 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

V. Chepyzhov, On uniform attractors of dynamic processes and nonautonomous equations of mathematical physics,, Russian Math. Surveys, 68 (2013), 349.   Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[7]

V. Chepyzhov and M. Vishik, Attractors of nonautonomous dynamical systems and their dimension,, J. Math. Pures Appl., 73 (1994), 279.   Google Scholar

[8]

V. Chepyzhov and M. Vishik, Attractors of non-autonomous evolution equations with translation-compact symbols,, in Partial Differential Operators and Mathematical Physics (Holzhau, (1994), 49.   Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[10]

M. Efendiev, S. Zelik and A. Miranville, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703.  doi: 10.1017/S030821050000408X.  Google Scholar

[11]

V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains,, submitted., ().   Google Scholar

[12]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[13]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[14]

S. Lu., Attractors for nonautonomous reaction-diffusion systems with symbols without strong translation compactness,, Asymptot. Anal., 54 (2007), 197.   Google Scholar

[15]

S. Ma, C. Zhong and H. Song, Attractors for nonautonomous 2D Navier-Stokes equations with less regular symbols,, Nonlinear Anal., 71 (2009), 4215.  doi: 10.1016/j.na.2009.02.107.  Google Scholar

[16]

S. Ma, X. Cheng and H. Li, Attractors for non-autonomous wave equations with a new class of external forces,, J. Math. Anal. Appl., 337 (2008), 808.  doi: 10.1016/j.jmaa.2007.03.108.  Google Scholar

[17]

S. Ma and C. Zhong, The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces,, Discrete Contin. Dyn. Syst., 18 (2007), 53.  doi: 10.3934/dcds.2007.18.53.  Google Scholar

[18]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[19]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, Nonlinearity, 11 (1998), 1369.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[20]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact nonautonomous systems via energy equations,, Discrete Contin. Dyn. Syst., 10 (2004), 473.  doi: 10.3934/dcds.2004.10.473.  Google Scholar

[21]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Second edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[22]

A. Robertson and W. Robertson, Topological Vector Spaces,, Reprint of the second edition, (1980).   Google Scholar

[23]

Y. Xie, K. Zhu and C. Sun, The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4746693.  Google Scholar

show all references

References:
[1]

C. Anh and N. Quang, Uniform attractors for nonautonomous parabolic equations involving weighted p-Laplacian operators,, Ann. Polon. Math., 98 (2010), 251.  doi: 10.4064/ap98-3-5.  Google Scholar

[2]

A. Babin and M. Vishik, Attractors of Evolutionary Equations,, North Holland, (1992).   Google Scholar

[3]

J. Ball, Global attractors for damped semilinear wave equations,, Discrete Contin. Dyn. Syst., 10 (2004), 31.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[5]

V. Chepyzhov, On uniform attractors of dynamic processes and nonautonomous equations of mathematical physics,, Russian Math. Surveys, 68 (2013), 349.   Google Scholar

[6]

V. Chepyzhov and M. Vishik, Attractors for Equations of Mathematical Physics,, American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[7]

V. Chepyzhov and M. Vishik, Attractors of nonautonomous dynamical systems and their dimension,, J. Math. Pures Appl., 73 (1994), 279.   Google Scholar

[8]

V. Chepyzhov and M. Vishik, Attractors of non-autonomous evolution equations with translation-compact symbols,, in Partial Differential Operators and Mathematical Physics (Holzhau, (1994), 49.   Google Scholar

[9]

H. Crauel and F. Flandoli, Attractors for random dynamical systems,, Probab. Theory Related Fields, 100 (1994), 365.  doi: 10.1007/BF01193705.  Google Scholar

[10]

M. Efendiev, S. Zelik and A. Miranville, Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems,, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 703.  doi: 10.1017/S030821050000408X.  Google Scholar

[11]

V. Kalantarov, A. Savostianov and S. Zelik, Attractors for damped quintic wave equations in bounded domains,, submitted., ().   Google Scholar

[12]

S. Lu, H. Wu and C. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external forces,, Discrete Contin. Dyn. Syst., 13 (2005), 701.  doi: 10.3934/dcds.2005.13.701.  Google Scholar

[13]

S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces,, J. Differential Equations, 230 (2006), 196.  doi: 10.1016/j.jde.2006.07.009.  Google Scholar

[14]

S. Lu., Attractors for nonautonomous reaction-diffusion systems with symbols without strong translation compactness,, Asymptot. Anal., 54 (2007), 197.   Google Scholar

[15]

S. Ma, C. Zhong and H. Song, Attractors for nonautonomous 2D Navier-Stokes equations with less regular symbols,, Nonlinear Anal., 71 (2009), 4215.  doi: 10.1016/j.na.2009.02.107.  Google Scholar

[16]

S. Ma, X. Cheng and H. Li, Attractors for non-autonomous wave equations with a new class of external forces,, J. Math. Anal. Appl., 337 (2008), 808.  doi: 10.1016/j.jmaa.2007.03.108.  Google Scholar

[17]

S. Ma and C. Zhong, The attractors for weakly damped non-autonomous hyperbolic equations with a new class of external forces,, Discrete Contin. Dyn. Syst., 18 (2007), 53.  doi: 10.3934/dcds.2007.18.53.  Google Scholar

[18]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations. Vol. IV, (2008), 103.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[19]

I. Moise, R. Rosa and X. Wang, Attractors for non-compact semigroups via energy equations,, Nonlinearity, 11 (1998), 1369.  doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[20]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact nonautonomous systems via energy equations,, Discrete Contin. Dyn. Syst., 10 (2004), 473.  doi: 10.3934/dcds.2004.10.473.  Google Scholar

[21]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics,, Second edition, (1997).  doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[22]

A. Robertson and W. Robertson, Topological Vector Spaces,, Reprint of the second edition, (1980).   Google Scholar

[23]

Y. Xie, K. Zhu and C. Sun, The existence of uniform attractors for non-autonomous reaction-diffusion equations on the whole space,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.4746693.  Google Scholar

[1]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[2]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[3]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[4]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[5]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[6]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[7]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[8]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[9]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[10]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[11]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[12]

Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521

[13]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[14]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[15]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[16]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[17]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[18]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[19]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[20]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]