May  2015, 20(3): 853-859. doi: 10.3934/dcdsb.2015.20.853

Smooth roughness of exponential dichotomies, revisited

1. 

Institut für Mathematik, Alpen-Adria Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria

Received  October 2013 Revised  April 2014 Published  January 2015

As a direct consequence of well-established proof techniques, we establish that the invariant projectors of exponential dichotomies for parameter-dependent nonautonomous difference equations are as smooth as their right-hand sides. For instance, this guarantees that the saddle-point structure in the vicinity of hyperbolic solutions inherits its differentiability properties from the particular given equation.
Citation: Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853
References:
[1]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, J. Difference Equ. Appl., 2 (1996), 251.  doi: 10.1080/10236199608808060.  Google Scholar

[2]

B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces,, Nonlin. Analysis (TMA), 40 (2000), 91.  doi: 10.1016/S0362-546X(00)85006-3.  Google Scholar

[3]

_______, Topological simplification of nonautonomous difference equations,, J. Difference Equ. Appl., 12 (2006), 283.  doi: 10.1080/10236190500489384.  Google Scholar

[4]

R. H. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications,, Second edition, (1988).  doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[5]

L. Barreira and C. Valls, Smooth robustness of exponential dichotomies,, Proc. Am. Math. Soc., 139 (2011), 999.  doi: 10.1090/S0002-9939-2010-10531-2.  Google Scholar

[6]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Grundlehren der mathematischen Wissenschaften, (1996).   Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lect. Notes Math., (1981).   Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980).   Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differ. Equations, 65 (1986), 321.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

[12]

_______, A perturbation theorem for exponential dichotomies,, Proc. R. Soc. Edinb. Section A, 106 (1987), 25.  doi: 10.1017/S0308210500018175.  Google Scholar

[13]

_______, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in Dynamics Reported. Vol. 1 (eds. U. Kirchgraber and H.-O. Walther), (1988), 265.   Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems,, Lect. Notes Math., (2002).  doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

_______, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete Contin. Dyn. Syst. (Series B), 14 (2010), 739.  doi: 10.3934/dcdsb.2010.14.739.  Google Scholar

[16]

_______, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937.  doi: 10.3934/cpaa.2011.10.937.  Google Scholar

[17]

B. Sandstede, Verzweigungstheorie Homokliner Verdopplungen,, Ph.D. thesis, (1993).   Google Scholar

[18]

K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds,, J. Differ. Equations, 107 (1994), 259.  doi: 10.1006/jdeq.1994.1012.  Google Scholar

[19]

Y. Yi, A generalized integral manifold theorem,, J. Differ. Equations, 102 (1993), 153.  doi: 10.1006/jdeq.1993.1026.  Google Scholar

[20]

K. Yosida, Functional Analysis,, Grundlehren der mathematischen Wissenschaften, (1980).   Google Scholar

show all references

References:
[1]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, J. Difference Equ. Appl., 2 (1996), 251.  doi: 10.1080/10236199608808060.  Google Scholar

[2]

B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces,, Nonlin. Analysis (TMA), 40 (2000), 91.  doi: 10.1016/S0362-546X(00)85006-3.  Google Scholar

[3]

_______, Topological simplification of nonautonomous difference equations,, J. Difference Equ. Appl., 12 (2006), 283.  doi: 10.1080/10236190500489384.  Google Scholar

[4]

R. H. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications,, Second edition, (1988).  doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[5]

L. Barreira and C. Valls, Smooth robustness of exponential dichotomies,, Proc. Am. Math. Soc., 139 (2011), 999.  doi: 10.1090/S0002-9939-2010-10531-2.  Google Scholar

[6]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Grundlehren der mathematischen Wissenschaften, (1996).   Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lect. Notes Math., (1981).   Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980).   Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differ. Equations, 65 (1986), 321.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

[12]

_______, A perturbation theorem for exponential dichotomies,, Proc. R. Soc. Edinb. Section A, 106 (1987), 25.  doi: 10.1017/S0308210500018175.  Google Scholar

[13]

_______, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in Dynamics Reported. Vol. 1 (eds. U. Kirchgraber and H.-O. Walther), (1988), 265.   Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems,, Lect. Notes Math., (2002).  doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

_______, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete Contin. Dyn. Syst. (Series B), 14 (2010), 739.  doi: 10.3934/dcdsb.2010.14.739.  Google Scholar

[16]

_______, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937.  doi: 10.3934/cpaa.2011.10.937.  Google Scholar

[17]

B. Sandstede, Verzweigungstheorie Homokliner Verdopplungen,, Ph.D. thesis, (1993).   Google Scholar

[18]

K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds,, J. Differ. Equations, 107 (1994), 259.  doi: 10.1006/jdeq.1994.1012.  Google Scholar

[19]

Y. Yi, A generalized integral manifold theorem,, J. Differ. Equations, 102 (1993), 153.  doi: 10.1006/jdeq.1993.1026.  Google Scholar

[20]

K. Yosida, Functional Analysis,, Grundlehren der mathematischen Wissenschaften, (1980).   Google Scholar

[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[3]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[4]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[5]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[6]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[7]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[8]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[11]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[12]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[13]

Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020052

[14]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[15]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[16]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[17]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[20]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]