May  2015, 20(3): 853-859. doi: 10.3934/dcdsb.2015.20.853

Smooth roughness of exponential dichotomies, revisited

1. 

Institut für Mathematik, Alpen-Adria Universität Klagenfurt, Universitätsstraße 65-67, 9020 Klagenfurt, Austria

Received  October 2013 Revised  April 2014 Published  January 2015

As a direct consequence of well-established proof techniques, we establish that the invariant projectors of exponential dichotomies for parameter-dependent nonautonomous difference equations are as smooth as their right-hand sides. For instance, this guarantees that the saddle-point structure in the vicinity of hyperbolic solutions inherits its differentiability properties from the particular given equation.
Citation: Christian Pötzsche. Smooth roughness of exponential dichotomies, revisited. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 853-859. doi: 10.3934/dcdsb.2015.20.853
References:
[1]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, J. Difference Equ. Appl., 2 (1996), 251.  doi: 10.1080/10236199608808060.  Google Scholar

[2]

B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces,, Nonlin. Analysis (TMA), 40 (2000), 91.  doi: 10.1016/S0362-546X(00)85006-3.  Google Scholar

[3]

_______, Topological simplification of nonautonomous difference equations,, J. Difference Equ. Appl., 12 (2006), 283.  doi: 10.1080/10236190500489384.  Google Scholar

[4]

R. H. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications,, Second edition, (1988).  doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[5]

L. Barreira and C. Valls, Smooth robustness of exponential dichotomies,, Proc. Am. Math. Soc., 139 (2011), 999.  doi: 10.1090/S0002-9939-2010-10531-2.  Google Scholar

[6]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Grundlehren der mathematischen Wissenschaften, (1996).   Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lect. Notes Math., (1981).   Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980).   Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differ. Equations, 65 (1986), 321.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

[12]

_______, A perturbation theorem for exponential dichotomies,, Proc. R. Soc. Edinb. Section A, 106 (1987), 25.  doi: 10.1017/S0308210500018175.  Google Scholar

[13]

_______, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in Dynamics Reported. Vol. 1 (eds. U. Kirchgraber and H.-O. Walther), (1988), 265.   Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems,, Lect. Notes Math., (2002).  doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

_______, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete Contin. Dyn. Syst. (Series B), 14 (2010), 739.  doi: 10.3934/dcdsb.2010.14.739.  Google Scholar

[16]

_______, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937.  doi: 10.3934/cpaa.2011.10.937.  Google Scholar

[17]

B. Sandstede, Verzweigungstheorie Homokliner Verdopplungen,, Ph.D. thesis, (1993).   Google Scholar

[18]

K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds,, J. Differ. Equations, 107 (1994), 259.  doi: 10.1006/jdeq.1994.1012.  Google Scholar

[19]

Y. Yi, A generalized integral manifold theorem,, J. Differ. Equations, 102 (1993), 153.  doi: 10.1006/jdeq.1993.1026.  Google Scholar

[20]

K. Yosida, Functional Analysis,, Grundlehren der mathematischen Wissenschaften, (1980).   Google Scholar

show all references

References:
[1]

B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II,, J. Difference Equ. Appl., 2 (1996), 251.  doi: 10.1080/10236199608808060.  Google Scholar

[2]

B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces,, Nonlin. Analysis (TMA), 40 (2000), 91.  doi: 10.1016/S0362-546X(00)85006-3.  Google Scholar

[3]

_______, Topological simplification of nonautonomous difference equations,, J. Difference Equ. Appl., 12 (2006), 283.  doi: 10.1080/10236190500489384.  Google Scholar

[4]

R. H. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications,, Second edition, (1988).  doi: 10.1007/978-1-4612-1029-0.  Google Scholar

[5]

L. Barreira and C. Valls, Smooth robustness of exponential dichotomies,, Proc. Am. Math. Soc., 139 (2011), 999.  doi: 10.1090/S0002-9939-2010-10531-2.  Google Scholar

[6]

A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems,, Applied Mathematical Sciences, (2013).  doi: 10.1007/978-1-4614-4581-4.  Google Scholar

[7]

S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory,, Grundlehren der mathematischen Wissenschaften, (1996).   Google Scholar

[8]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lect. Notes Math., (1981).   Google Scholar

[9]

T. Kato, Perturbation Theory for Linear Operators,, Reprint of the 1980 edition, (1980).   Google Scholar

[10]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[11]

K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system,, J. Differ. Equations, 65 (1986), 321.  doi: 10.1016/0022-0396(86)90023-9.  Google Scholar

[12]

_______, A perturbation theorem for exponential dichotomies,, Proc. R. Soc. Edinb. Section A, 106 (1987), 25.  doi: 10.1017/S0308210500018175.  Google Scholar

[13]

_______, Exponential dichotomies, the shadowing lemma and transversal homoclinic points,, in Dynamics Reported. Vol. 1 (eds. U. Kirchgraber and H.-O. Walther), (1988), 265.   Google Scholar

[14]

C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems,, Lect. Notes Math., (2002).  doi: 10.1007/978-3-642-14258-1.  Google Scholar

[15]

_______, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach,, Discrete Contin. Dyn. Syst. (Series B), 14 (2010), 739.  doi: 10.3934/dcdsb.2010.14.739.  Google Scholar

[16]

_______, Nonautonomous continuation of bounded solutions,, Commun. Pure Appl. Anal., 10 (2011), 937.  doi: 10.3934/cpaa.2011.10.937.  Google Scholar

[17]

B. Sandstede, Verzweigungstheorie Homokliner Verdopplungen,, Ph.D. thesis, (1993).   Google Scholar

[18]

K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds,, J. Differ. Equations, 107 (1994), 259.  doi: 10.1006/jdeq.1994.1012.  Google Scholar

[19]

Y. Yi, A generalized integral manifold theorem,, J. Differ. Equations, 102 (1993), 153.  doi: 10.1006/jdeq.1993.1026.  Google Scholar

[20]

K. Yosida, Functional Analysis,, Grundlehren der mathematischen Wissenschaften, (1980).   Google Scholar

[1]

Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048

[2]

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential dichotomy for evolution families. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 383-397. doi: 10.3934/dcds.2003.9.383

[3]

Ciprian Preda. Discrete-time theorems for the dichotomy of one-parameter semigroups. Communications on Pure & Applied Analysis, 2008, 7 (2) : 457-463. doi: 10.3934/cpaa.2008.7.457

[4]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[5]

Lei Wang, Jinlong Yuan, Yingfang Li, Enmin Feng, Zhilong Xiu. Parameter identification of nonlinear delayed dynamical system in microbial fermentation based on biological robustness. Numerical Algebra, Control & Optimization, 2014, 4 (2) : 103-113. doi: 10.3934/naco.2014.4.103

[6]

Yejuan Wang, Chengkui Zhong, Shengfan Zhou. Pullback attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 587-614. doi: 10.3934/dcds.2006.16.587

[7]

Bernd Aulbach, Martin Rasmussen, Stefan Siegmund. Approximation of attractors of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 215-238. doi: 10.3934/dcdsb.2005.5.215

[8]

Chunqiu Li, Desheng Li, Xuewei Ju. On the forward dynamical behavior of nonautonomous systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 473-487. doi: 10.3934/dcdsb.2019190

[9]

Giselle A. Monteiro, Milan Tvrdý. Generalized linear differential equations in a Banach space: Continuous dependence on a parameter. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 283-303. doi: 10.3934/dcds.2013.33.283

[10]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[11]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[12]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[13]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[14]

Björn Schmalfuss. Attractors for nonautonomous and random dynamical systems perturbed by impulses. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 727-744. doi: 10.3934/dcds.2003.9.727

[15]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[16]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[17]

Ralf Spatzier, Lei Yang. Exponential mixing and smooth classification of commuting expanding maps. Journal of Modern Dynamics, 2017, 11: 263-312. doi: 10.3934/jmd.2017012

[18]

Éder Rítis Aragão Costa. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 845-868. doi: 10.3934/cpaa.2019041

[19]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[20]

John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$-laplacian. Conference Publications, 2011, 2011 (Special) : 515-522. doi: 10.3934/proc.2011.2011.515

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]