\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Smooth roughness of exponential dichotomies, revisited

Abstract Related Papers Cited by
  • As a direct consequence of well-established proof techniques, we establish that the invariant projectors of exponential dichotomies for parameter-dependent nonautonomous difference equations are as smooth as their right-hand sides. For instance, this guarantees that the saddle-point structure in the vicinity of hyperbolic solutions inherits its differentiability properties from the particular given equation.
    Mathematics Subject Classification: Primary: 34D09; Secondary: 37B55, 39A30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Aulbach and N. Van Minh, The concept of spectral dichotomy for linear difference equations II, J. Difference Equ. Appl., 2 (1996), 251-262.doi: 10.1080/10236199608808060.

    [2]

    B. Aulbach and T. Wanner, The Hartman-Grobman theorem for Carathéodory-type differential equations in Banach spaces, Nonlin. Analysis (TMA), 40 (2000), 91-104.doi: 10.1016/S0362-546X(00)85006-3.

    [3]

    _______, Topological simplification of nonautonomous difference equations, J. Difference Equ. Appl., 12 (2006), 283-296.doi: 10.1080/10236190500489384.

    [4]

    R. H. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Second edition, Applied Mathematical Sciences, 75, Springer, Berlin etc., 1988.doi: 10.1007/978-1-4612-1029-0.

    [5]

    L. Barreira and C. Valls, Smooth robustness of exponential dichotomies, Proc. Am. Math. Soc., 139 (2011), 999-1012.doi: 10.1090/S0002-9939-2010-10531-2.

    [6]

    A. Carvalho, J. Langa and J. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Applied Mathematical Sciences, 182, Springer, New York, 2013.doi: 10.1007/978-1-4614-4581-4.

    [7]

    S.-N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren der mathematischen Wissenschaften, 251, Springer, Berlin etc., 1996.

    [8]

    D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 840, Springer, Berlin etc., 1981.

    [9]

    T. Kato, Perturbation Theory for Linear Operators, Reprint of the 1980 edition, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

    [10]

    P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, AMS, Providence, RI, 2011.doi: 10.1090/surv/176.

    [11]

    K. J. Palmer, Transversal heteroclinic points and Cherry's example of a nonintegrable Hamiltonian system, J. Differ. Equations, 65 (1986), 321-360.doi: 10.1016/0022-0396(86)90023-9.

    [12]

    _______, A perturbation theorem for exponential dichotomies, Proc. R. Soc. Edinb. Section A, 106 (1987), 25-37.doi: 10.1017/S0308210500018175.

    [13]

    _______, Exponential dichotomies, the shadowing lemma and transversal homoclinic points, in Dynamics Reported. Vol. 1 (eds. U. Kirchgraber and H.-O. Walther), B.G. Teubner and John Wiley and Sons, Stuttgart/Chichester etc., 1988, 265-306.

    [14]

    C. Pötzsche, Geometric Theory of Discrete Nonautonomous Dynamical Systems, Lect. Notes Math., 2002, Springer, Berlin etc., 2010.doi: 10.1007/978-3-642-14258-1.

    [15]

    _______, Nonautonomous bifurcation of bounded solutions I: A Lyapunov-Schmidt approach, Discrete Contin. Dyn. Syst. (Series B), 14 (2010), 739-776.doi: 10.3934/dcdsb.2010.14.739.

    [16]

    _______, Nonautonomous continuation of bounded solutions, Commun. Pure Appl. Anal., 10 (2011), 937-961.doi: 10.3934/cpaa.2011.10.937.

    [17]

    B. Sandstede, Verzweigungstheorie Homokliner Verdopplungen, Ph.D. thesis, Universität Stuttgart, Germany, 1993.

    [18]

    K. Sakamoto, Estimates on the strength of exponential dichotomies and application to integral manifolds, J. Differ. Equations, 107 (1994), 259-279.doi: 10.1006/jdeq.1994.1012.

    [19]

    Y. Yi, A generalized integral manifold theorem, J. Differ. Equations, 102 (1993), 153-187.doi: 10.1006/jdeq.1993.1026.

    [20]

    K. Yosida, Functional Analysis, Grundlehren der mathematischen Wissenschaften, 123, Springer, Berlin etc., 1980.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(162) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return