May  2015, 20(3): 861-874. doi: 10.3934/dcdsb.2015.20.861

On Lyapunov exponents of difference equations with random delay

1. 

Institute of Mathematics, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, 10307 Hanoi, Vietnam

2. 

Institute of Mathematics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, 10307 Ha Noi, Vietnam

3. 

Institute for Analysis & Center for Dynamics, Department of Mathematics, Technische Universität Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany

Received  November 2013 Revised  August 2014 Published  January 2015

The multiplicative ergodic theorem by Oseledets on Lyapunov spectrum and Oseledets subspaces is extended to linear random difference equations with random delay. In contrast to the general multiplicative ergodic theorem by Lian and Lu, we can prove that a random dynamical system generated by a difference equation with random delay cannot have infinitely many Lyapunov exponents.
Citation: Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

L. Arnold and N. D. Cong, Generic properties of Lyapunov exponents,, Random Comput. Dynam., 2 (1994), 335.   Google Scholar

[3]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[4]

H. Crauel, T. S. Doan and S. Siegmund, Difference equations with random delay,, J. Difference Equ. Appl., 15 (2009), 627.  doi: 10.1080/10236190802612865.  Google Scholar

[5]

T. S. Doan and S. Siegmund, Differential equations with random delay,, Fields Inst. Commun., 64 (2013), 279.  doi: 10.1007/978-1-4614-4523-4_11.  Google Scholar

[6]

R. C. Ferreira, M. R. S. Briones and F. Antoneli, A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks,, preprint, (2013).   Google Scholar

[7]

M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.  doi: 10.1142/S0219493711003358.  Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473).   Google Scholar

[9]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[10]

P. Walter, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[11]

F. Wu, G. G. Yin and L. Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching,, J. Differential Equations, 253 (2012), 878.  doi: 10.1016/j.jde.2012.04.017.  Google Scholar

[12]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715.  doi: 10.3934/dcdsb.2013.18.1715.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer-Verlag, (1998).  doi: 10.1007/978-3-662-12878-7.  Google Scholar

[2]

L. Arnold and N. D. Cong, Generic properties of Lyapunov exponents,, Random Comput. Dynam., 2 (1994), 335.   Google Scholar

[3]

I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory,, Springer-Verlag, (1982).  doi: 10.1007/978-1-4615-6927-5.  Google Scholar

[4]

H. Crauel, T. S. Doan and S. Siegmund, Difference equations with random delay,, J. Difference Equ. Appl., 15 (2009), 627.  doi: 10.1080/10236190802612865.  Google Scholar

[5]

T. S. Doan and S. Siegmund, Differential equations with random delay,, Fields Inst. Commun., 64 (2013), 279.  doi: 10.1007/978-1-4614-4523-4_11.  Google Scholar

[6]

R. C. Ferreira, M. R. S. Briones and F. Antoneli, A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks,, preprint, (2013).   Google Scholar

[7]

M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays,, Stoch. Dyn., 11 (2011), 369.  doi: 10.1142/S0219493711003358.  Google Scholar

[8]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay,, Lecture Notes in Mathematics, (1473).   Google Scholar

[9]

Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space,, Mem. Amer. Math. Soc., 206 (2010).  doi: 10.1090/S0065-9266-10-00574-0.  Google Scholar

[10]

P. Walter, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982).   Google Scholar

[11]

F. Wu, G. G. Yin and L. Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching,, J. Differential Equations, 253 (2012), 878.  doi: 10.1016/j.jde.2012.04.017.  Google Scholar

[12]

F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715.  doi: 10.3934/dcdsb.2013.18.1715.  Google Scholar

[1]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[2]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[3]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[4]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[5]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[6]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[7]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[8]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[9]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[10]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[13]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[14]

Wenlong Sun, Jiaqi Cheng, Xiaoying Han. Random attractors for 2D stochastic micropolar fluid flows on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 693-716. doi: 10.3934/dcdsb.2020189

[15]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[16]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[19]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[20]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (46)
  • HTML views (0)
  • Cited by (2)

[Back to Top]