Citation: |
[1] |
L. Arnold, Random Dynamical Systems, Springer-Verlag, Berlin, 1998.doi: 10.1007/978-3-662-12878-7. |
[2] |
L. Arnold and N. D. Cong, Generic properties of Lyapunov exponents, Random Comput. Dynam., 2 (1994), 335-345. |
[3] |
I. P. Cornfeld, S. V. Fomin and Y. G. Sinaĭ, Ergodic Theory, Springer-Verlag, New York, 1982.doi: 10.1007/978-1-4615-6927-5. |
[4] |
H. Crauel, T. S. Doan and S. Siegmund, Difference equations with random delay, J. Difference Equ. Appl., 15 (2009), 627-647.doi: 10.1080/10236190802612865. |
[5] |
T. S. Doan and S. Siegmund, Differential equations with random delay, Fields Inst. Commun., 64 (2013), 279-303.doi: 10.1007/978-1-4614-4523-4_11. |
[6] |
R. C. Ferreira, M. R. S. Briones and F. Antoneli, A model of gene expression based on random dynamical systems reveals modularity properties of gene regulatory networks, preprint, arXiv:1309.0765, 2013. |
[7] |
M. J. Garrido-Atienza, A. Ogrowsky and B. Schmalfuss, Random differential equations with random delays, Stoch. Dyn., 11 (2011), 369-388.doi: 10.1142/S0219493711003358. |
[8] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991. |
[9] |
Z. Lian and K. Lu, Lyapunov exponents and invariant manifolds for random dynamical systems in a Banach space, Mem. Amer. Math. Soc., 206 (2010), vi+106 pp.doi: 10.1090/S0065-9266-10-00574-0. |
[10] |
P. Walter, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982. |
[11] |
F. Wu, G. G. Yin and L. Y. Wang, Stability of a pure random delay system with two-time-scale Markovian switching, J. Differential Equations, 253 (2012), 878-905.doi: 10.1016/j.jde.2012.04.017. |
[12] |
F. Wu and P. E. Kloeden, Mean-square random attractors of stochastic delay differential equations with random delay, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1715-1734.doi: 10.3934/dcdsb.2013.18.1715. |