Advanced Search
Article Contents
Article Contents

The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor

Abstract Related Papers Cited by
  • The dichotomy spectrum is introduced for linear mean-square random dynamical systems, and it is shown that for finite-dimensional mean-field stochastic differential equations, the dichotomy spectrum consists of finitely many compact intervals. It is then demonstrated that a change in the sign of the dichotomy spectrum is associated with a bifurcation from a trivial to a non-trivial mean-square random attractor.
    Mathematics Subject Classification: Primary: 37H15, 37H20, 60H10; Secondary: 37H10, 60H30.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, Random Dynamical Systems, Springer, Berlin, Heidelberg, New York, 1998.


    A. M. Ateiwi, About bounded solutions of linear stochastic Ito systems, Miskolc Math. Notes, 3 (2002), 3-12.


    M. Callaway, T. S. Doan, J. S. W. Lamb and M. Rasmussen, The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with bounded noise, submitted.


    N. D. Cong and S. Siegmund, Dichotomy spectrum of nonautonomous linear stochastic differential equations, Stochastics and Dynamics, 2 (2002), 175-201.doi: 10.1142/S0219493702000364.


    R. Khasminskii, Stochastic Stability of Differential Equations, Second edition, Stochastic Modelling and Applied Probability, 66, Springer, Heidelberg, 2012.doi: 10.1007/978-3-642-23280-0.


    P. E. Kloeden and T. Lorenz, Stochastic differential equations with nonlocal sample dependence, Stochastic Analysis and Applications, 28 (2010), 937-945.doi: 10.1080/07362994.2010.515194.


    P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems, Journal of Differential Equations, 253 (2012), 1422-1438.doi: 10.1016/j.jde.2012.05.016.


    P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Applications of Mathematics, 23, Springer, Berlin, 1992.doi: 10.1007/978-3-662-12616-5.


    P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Mathematical Surveys and Monographs, 176, American Mathematical Society, Providence, RI, 2011.doi: 10.1090/surv/176.


    P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire trajectories of set-valued dynamical systems, Set-Valued and Variational Analysis, 19 (2011), 43-57.doi: 10.1007/s11228-009-0123-2.


    R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, Journal of Differential Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8.


    D. Stoica, Uniform exponential dichotomy of stochastic cocycles, Stochastic Processes and their Applications, 120 (2010), 1920-1928.doi: 10.1016/j.spa.2010.05.016.


    G. Wang and Y. Cao, Dynamical spectrum in random dynamical systems, Journal of Dynamics and Differential Equations, 26 (2014), 1-20.doi: 10.1007/s10884-013-9340-3.

  • 加载中

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint