May  2015, 20(3): 875-887. doi: 10.3934/dcdsb.2015.20.875

The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor

1. 

Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, United Kingdom, United Kingdom

2. 

School of Mathematics and Statistics, Huazhong University of Science & Technology, Wuhan 430074, China

Received  November 2013 Revised  April 2014 Published  January 2015

The dichotomy spectrum is introduced for linear mean-square random dynamical systems, and it is shown that for finite-dimensional mean-field stochastic differential equations, the dichotomy spectrum consists of finitely many compact intervals. It is then demonstrated that a change in the sign of the dichotomy spectrum is associated with a bifurcation from a trivial to a non-trivial mean-square random attractor.
Citation: Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875
References:
[1]

L. Arnold, Random Dynamical Systems,, Springer, (1998).   Google Scholar

[2]

A. M. Ateiwi, About bounded solutions of linear stochastic Ito systems,, Miskolc Math. Notes, 3 (2002), 3.   Google Scholar

[3]

M. Callaway, T. S. Doan, J. S. W. Lamb and M. Rasmussen, The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with bounded noise,, submitted., ().   Google Scholar

[4]

N. D. Cong and S. Siegmund, Dichotomy spectrum of nonautonomous linear stochastic differential equations,, Stochastics and Dynamics, 2 (2002), 175.  doi: 10.1142/S0219493702000364.  Google Scholar

[5]

R. Khasminskii, Stochastic Stability of Differential Equations,, Second edition, (2012).  doi: 10.1007/978-3-642-23280-0.  Google Scholar

[6]

P. E. Kloeden and T. Lorenz, Stochastic differential equations with nonlocal sample dependence,, Stochastic Analysis and Applications, 28 (2010), 937.  doi: 10.1080/07362994.2010.515194.  Google Scholar

[7]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems,, Journal of Differential Equations, 253 (2012), 1422.  doi: 10.1016/j.jde.2012.05.016.  Google Scholar

[8]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Applications of Mathematics, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[9]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[10]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire trajectories of set-valued dynamical systems,, Set-Valued and Variational Analysis, 19 (2011), 43.  doi: 10.1007/s11228-009-0123-2.  Google Scholar

[11]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, Journal of Differential Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[12]

D. Stoica, Uniform exponential dichotomy of stochastic cocycles,, Stochastic Processes and their Applications, 120 (2010), 1920.  doi: 10.1016/j.spa.2010.05.016.  Google Scholar

[13]

G. Wang and Y. Cao, Dynamical spectrum in random dynamical systems,, Journal of Dynamics and Differential Equations, 26 (2014), 1.  doi: 10.1007/s10884-013-9340-3.  Google Scholar

show all references

References:
[1]

L. Arnold, Random Dynamical Systems,, Springer, (1998).   Google Scholar

[2]

A. M. Ateiwi, About bounded solutions of linear stochastic Ito systems,, Miskolc Math. Notes, 3 (2002), 3.   Google Scholar

[3]

M. Callaway, T. S. Doan, J. S. W. Lamb and M. Rasmussen, The dichotomy spectrum for random dynamical systems and pitchfork bifurcations with bounded noise,, submitted., ().   Google Scholar

[4]

N. D. Cong and S. Siegmund, Dichotomy spectrum of nonautonomous linear stochastic differential equations,, Stochastics and Dynamics, 2 (2002), 175.  doi: 10.1142/S0219493702000364.  Google Scholar

[5]

R. Khasminskii, Stochastic Stability of Differential Equations,, Second edition, (2012).  doi: 10.1007/978-3-642-23280-0.  Google Scholar

[6]

P. E. Kloeden and T. Lorenz, Stochastic differential equations with nonlocal sample dependence,, Stochastic Analysis and Applications, 28 (2010), 937.  doi: 10.1080/07362994.2010.515194.  Google Scholar

[7]

P. E. Kloeden and T. Lorenz, Mean-square random dynamical systems,, Journal of Differential Equations, 253 (2012), 1422.  doi: 10.1016/j.jde.2012.05.016.  Google Scholar

[8]

P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations,, Applications of Mathematics, (1992).  doi: 10.1007/978-3-662-12616-5.  Google Scholar

[9]

P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems,, Mathematical Surveys and Monographs, (2011).  doi: 10.1090/surv/176.  Google Scholar

[10]

P. E. Kloeden and P. Marín-Rubio, Negatively invariant sets and entire trajectories of set-valued dynamical systems,, Set-Valued and Variational Analysis, 19 (2011), 43.  doi: 10.1007/s11228-009-0123-2.  Google Scholar

[11]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, Journal of Differential Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[12]

D. Stoica, Uniform exponential dichotomy of stochastic cocycles,, Stochastic Processes and their Applications, 120 (2010), 1920.  doi: 10.1016/j.spa.2010.05.016.  Google Scholar

[13]

G. Wang and Y. Cao, Dynamical spectrum in random dynamical systems,, Journal of Dynamics and Differential Equations, 26 (2014), 1.  doi: 10.1007/s10884-013-9340-3.  Google Scholar

[1]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[2]

Jie Li, Xiangdong Ye, Tao Yu. Mean equicontinuity, complexity and applications. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 359-393. doi: 10.3934/dcds.2020167

[3]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[4]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[5]

Patrick W. Dondl, Martin Jesenko. Threshold phenomenon for homogenized fronts in random elastic media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 353-372. doi: 10.3934/dcdss.2020329

[6]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[7]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[8]

Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020033

[9]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[12]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[13]

Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039

[14]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[15]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[16]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2021, 17 (2) : 765-777. doi: 10.3934/jimo.2019133

[17]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[18]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[19]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[20]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (6)

[Back to Top]