May  2015, 20(3): 889-914. doi: 10.3934/dcdsb.2015.20.889

Remarks on linear-quadratic dissipative control systems

1. 

Dipartimento di Matematica e Informatica, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy

2. 

Departamento de Matemática Aplicada, E. Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce 59, 47011 Valladolid

Received  August 2013 Revised  May 2014 Published  January 2015

We study the concept of dissipativity in the sense of Willems for nonautonomous linear-quadratic (LQ) control systems. A nonautonomous system of Hamiltonian ODEs is associated with such an LQ system by way of the Pontryagin Maximum Principle. We relate the concepts of exponential dichotomy and weak disconjugacy for this Hamiltonian ODE to that of dissipativity for the LQ system.
Citation: Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889
References:
[1]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications,, Massob, (1987).   Google Scholar

[2]

N. D. Cong, A generic bounded linear cocycle has simple Lyapunov spectrum,, Ergod. Th. Dynam. Sys., 25 (2005), 1775.  doi: 10.1017/S0143385705000337.  Google Scholar

[3]

W. A. Coppel, Disconjugacy,, Lecture Notes in Mathematics, (1971).   Google Scholar

[4]

R. Ellis, Lectures on Topological Dynamics,, Benjamin, (1969).   Google Scholar

[5]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems,, J. Math. Anal. Appl., 380 (2011), 853.  doi: 10.1016/j.jmaa.2010.11.036.  Google Scholar

[6]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, On linear-quadratic dissipative control processes with time-varying coefficients,, Discrete Contin. Dynam. Systems, 33 (2013), 193.  doi: 10.3934/dcds.2013.33.193.  Google Scholar

[7]

R. Fabbri, R. Johnson, S. Novo, C. Núñez and R. Obaya, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control,, in preparation., ().   Google Scholar

[8]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes,, Discrete Contin. Dynam. Systems, 9 (2003), 677.  doi: 10.3934/dcds.2003.9.677.  Google Scholar

[9]

R. Fabbri, R. Johnson and C. Núñez, Disconjugacy and the rotation number for linear, nonautonomus linear Hamiltonian systems,, Ann. Mat. Pura App., 185 (2006).   Google Scholar

[10]

R. Johnson and M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems,, Mem. Amer. Math. Soc., 136 (1998).  doi: 10.1090/memo/0646.  Google Scholar

[11]

R. Johnson, Ergodic theory and linear differential equations,, J. Differential Equations, 28 (1978), 23.  doi: 10.1016/0022-0396(78)90077-3.  Google Scholar

[12]

R. Johnson, The recurrent Hill's equation,, J. Differential Equations, 46 (1982), 165.  doi: 10.1016/0022-0396(82)90114-0.  Google Scholar

[13]

R. Johnson, S. Novo and R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems,, Illinois J. Math., 45 (2001), 803.   Google Scholar

[14]

R. Johnson, C. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes,, J. Dynam. Differential Equations, 25 (2013), 679.  doi: 10.1007/s10884-013-9300-y.  Google Scholar

[15]

T. Kato, Perturbation Theory for Linear Operators,, Corrected printing of the second edition, (1995).   Google Scholar

[16]

V. B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations,, Dokl. Akad. Nank. SSSR, 102 (1955), 877.   Google Scholar

[17]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987).  doi: 10.1007/978-3-642-70335-5.  Google Scholar

[18]

Y. Matsushima, Differentiable Manifolds,, Marcel Dekker, (1972).   Google Scholar

[19]

A. Mazurov and P. Pakshin, Stochastic dissipativity with risk-sensitive storage function and related control problems,, ICIC Express Letters, 3 (2009), 53.   Google Scholar

[20]

V. M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients,, Diff. Urav., 4 (1968), 391.   Google Scholar

[21]

V. I. Oseledets, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 179.   Google Scholar

[22]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. I.H.E.S., 50 (1979), 27.   Google Scholar

[23]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[24]

H. L. Trentelman and J. C. Willems, Dissipative linear differential systems and the state-space H-infinity control problem,, Int. Jour. Robust Nonlin. Control, 10 (2000), 1039.  doi: 10.1002/1099-1239(200009/10)10:11/12<1039::AID-RNC538>3.0.CO;2-5.  Google Scholar

[25]

R. E. Vinograd, A problem suggested by N. P. Erugin,, Diff. Urav., 11 (1975), 632.   Google Scholar

[26]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

[27]

V. A. Yakubovich, Oscillatory properties of the solutions of canonical equations,, Amer. Math. Soc. Transl. Ser., 42 (1964), 247.   Google Scholar

[28]

V. Yakubovich, Contribution to the abstract theory of optimal control I (in Russian),, Sib. Mat. Zh., 18 (1977), 685.   Google Scholar

[29]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems I (in Russian),, Sib. Mat. Zh., 27 (1986), 181.   Google Scholar

[30]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems II,, Siberian Math. J., 31 (1990), 1027.  doi: 10.1007/BF00970068.  Google Scholar

[31]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems,, IEEE Trans. Automat. Control, 52 (2007), 1039.  doi: 10.1109/TAC.2007.899013.  Google Scholar

show all references

References:
[1]

H. Brezis, Analyse Fonctionnelle. Théorie et Applications,, Massob, (1987).   Google Scholar

[2]

N. D. Cong, A generic bounded linear cocycle has simple Lyapunov spectrum,, Ergod. Th. Dynam. Sys., 25 (2005), 1775.  doi: 10.1017/S0143385705000337.  Google Scholar

[3]

W. A. Coppel, Disconjugacy,, Lecture Notes in Mathematics, (1971).   Google Scholar

[4]

R. Ellis, Lectures on Topological Dynamics,, Benjamin, (1969).   Google Scholar

[5]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, Some remarks concerning weakly disconjugate linear Hamiltonian systems,, J. Math. Anal. Appl., 380 (2011), 853.  doi: 10.1016/j.jmaa.2010.11.036.  Google Scholar

[6]

R. Fabbri, R. Johnson, S. Novo and C. Núñez, On linear-quadratic dissipative control processes with time-varying coefficients,, Discrete Contin. Dynam. Systems, 33 (2013), 193.  doi: 10.3934/dcds.2013.33.193.  Google Scholar

[7]

R. Fabbri, R. Johnson, S. Novo, C. Núñez and R. Obaya, Nonautonomous Linear Hamiltonian Systems: Oscillation, Spectral Theory and Control,, in preparation., ().   Google Scholar

[8]

R. Fabbri, R. Johnson and C. Núñez, On the Yakubovich Frequency Theorem for linear non-autonomous control processes,, Discrete Contin. Dynam. Systems, 9 (2003), 677.  doi: 10.3934/dcds.2003.9.677.  Google Scholar

[9]

R. Fabbri, R. Johnson and C. Núñez, Disconjugacy and the rotation number for linear, nonautonomus linear Hamiltonian systems,, Ann. Mat. Pura App., 185 (2006).   Google Scholar

[10]

R. Johnson and M. Nerurkar, Controllability, stabilization, and the regulator problem for random differential systems,, Mem. Amer. Math. Soc., 136 (1998).  doi: 10.1090/memo/0646.  Google Scholar

[11]

R. Johnson, Ergodic theory and linear differential equations,, J. Differential Equations, 28 (1978), 23.  doi: 10.1016/0022-0396(78)90077-3.  Google Scholar

[12]

R. Johnson, The recurrent Hill's equation,, J. Differential Equations, 46 (1982), 165.  doi: 10.1016/0022-0396(82)90114-0.  Google Scholar

[13]

R. Johnson, S. Novo and R. Obaya, An ergodic and topological approach to disconjugate linear Hamiltonian systems,, Illinois J. Math., 45 (2001), 803.   Google Scholar

[14]

R. Johnson, C. Núñez and R. Obaya, Dynamical methods for linear Hamiltonian systems with applications to control processes,, J. Dynam. Differential Equations, 25 (2013), 679.  doi: 10.1007/s10884-013-9300-y.  Google Scholar

[15]

T. Kato, Perturbation Theory for Linear Operators,, Corrected printing of the second edition, (1995).   Google Scholar

[16]

V. B. Lidskiĭ, Oscillation theorems for canonical systems of differential equations,, Dokl. Akad. Nank. SSSR, 102 (1955), 877.   Google Scholar

[17]

R. Mañé, Ergodic Theory and Differentiable Dynamics,, Springer-Verlag, (1987).  doi: 10.1007/978-3-642-70335-5.  Google Scholar

[18]

Y. Matsushima, Differentiable Manifolds,, Marcel Dekker, (1972).   Google Scholar

[19]

A. Mazurov and P. Pakshin, Stochastic dissipativity with risk-sensitive storage function and related control problems,, ICIC Express Letters, 3 (2009), 53.   Google Scholar

[20]

V. M. Millionščikov, Proof of the existence of irregular systems of linear differential equations with almost periodic coefficients,, Diff. Urav., 4 (1968), 391.   Google Scholar

[21]

V. I. Oseledets, A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems,, Trans. Moscow Math. Soc., 19 (1968), 179.   Google Scholar

[22]

D. Ruelle, Ergodic theory of differentiable dynamical systems,, Publ. I.H.E.S., 50 (1979), 27.   Google Scholar

[23]

R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems,, J. Differential Equations, 27 (1978), 320.  doi: 10.1016/0022-0396(78)90057-8.  Google Scholar

[24]

H. L. Trentelman and J. C. Willems, Dissipative linear differential systems and the state-space H-infinity control problem,, Int. Jour. Robust Nonlin. Control, 10 (2000), 1039.  doi: 10.1002/1099-1239(200009/10)10:11/12<1039::AID-RNC538>3.0.CO;2-5.  Google Scholar

[25]

R. E. Vinograd, A problem suggested by N. P. Erugin,, Diff. Urav., 11 (1975), 632.   Google Scholar

[26]

J. C. Willems, Dissipative dynamical systems. Part I: General theory. Part II: Linear systems with quadratic supply rates,, Arch. Rational Mech. Anal., 45 (1972), 321.  doi: 10.1007/BF00276493.  Google Scholar

[27]

V. A. Yakubovich, Oscillatory properties of the solutions of canonical equations,, Amer. Math. Soc. Transl. Ser., 42 (1964), 247.   Google Scholar

[28]

V. Yakubovich, Contribution to the abstract theory of optimal control I (in Russian),, Sib. Mat. Zh., 18 (1977), 685.   Google Scholar

[29]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems I (in Russian),, Sib. Mat. Zh., 27 (1986), 181.   Google Scholar

[30]

V. A. Yakubovich, Linear-quadratic optimization problem and the frequency theorem for periodic systems II,, Siberian Math. J., 31 (1990), 1027.  doi: 10.1007/BF00970068.  Google Scholar

[31]

V. A. Yakubovich, A. L. Fradkov, D. J. Hill and A. V. Proskurnikov, Dissipativity of $T$-periodic linear systems,, IEEE Trans. Automat. Control, 52 (2007), 1039.  doi: 10.1109/TAC.2007.899013.  Google Scholar

[1]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[2]

Lars Grüne, Roberto Guglielmi. On the relation between turnpike properties and dissipativity for continuous time linear quadratic optimal control problems. Mathematical Control & Related Fields, 2021, 11 (1) : 169-188. doi: 10.3934/mcrf.2020032

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[6]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[7]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[8]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[9]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[10]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[11]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[12]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[13]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[14]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021018

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Duy Phan, Lassi Paunonen. Finite-dimensional controllers for robust regulation of boundary control systems. Mathematical Control & Related Fields, 2021, 11 (1) : 95-117. doi: 10.3934/mcrf.2020029

[17]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[18]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[19]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[20]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]