Citation: |
[1] |
H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.doi: 10.1137/1018114. |
[2] |
O. Arratia, R. Obaya and M. E. Sansaturio, Applications of the exponential ordering in the study of almost-periodic delayed Hopfield neural networks, Physica D, 241 (2012), 1551-1566.doi: 10.1016/j.physd.2012.06.007. |
[3] |
G. Benettin, L. Galgani, A. Giorgilli and J. M. Strelcyn, Lyapunov exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory, Meccanica, 15 (1980), 9-20.doi: 10.1007/BF02128236. |
[4] |
G. Benettin, L. Galgani, A. Giorgilli and J. M. Strelcyn, Lyapunov exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: numerical applications, Meccanica, 15 (1980), 21-30. |
[5] |
D. Breda, S. Maset and R. Vermiglio, Approximation of eigenvalues of evolution operators for lineal retarded functional differential equations, SIAM J. Numer. Anal., 50 (2012), 1456-1483.doi: 10.1137/100815505. |
[6] |
D. Breda and E. Van Vleck, Approximating Lyapunov exponents and Sacker-Sell spectrum for retarded functional differential equations, Numer. Math, 126 (2014), 225-257.doi: 10.1007/s00211-013-0565-1. |
[7] |
D. Breda, S. Maset and R. Vermiglio, Pseudospectral approximation of eigenvalues of derivative operators with non-local boundary conditions, Appl. Numer. Math., 56 (2006), 318-331.doi: 10.1016/j.apnum.2005.04.011. |
[8] |
L.O. Chua and L. Yang, Cellular neural network: Theory, IEEE Trans. Circuits. Syst., 35 (1988), 1257-1272.doi: 10.1109/31.7600. |
[9] |
L. O. Chua and L. Yang, Cellular neural network: Applications, IEEE Trans. Circuits. Syst., 35 (1988), 1273-1290.doi: 10.1109/31.7601. |
[10] |
I. Chueshov, Monotone Random Systems: Theory and Applications, Springer-Verlag, Berlin, 2002.doi: 10.1007/b83277. |
[11] |
L. Dieci, R. D. Russell and E. S. Van Vleck, On the computation of Lyapunov exponents for continuous dynamical systems, SIAM J. Numer. Anal. 34 (1997), 402-423.doi: 10.1137/S0036142993247311. |
[12] |
L. Dieci and E. S. Van Vleck, Perturbation theory for approximation of Lyapunov exponent by QR methods, J. Dyn. Diff. Equat., 18 (2006), 815-840.doi: 10.1007/s10884-006-9024-3. |
[13] |
C. Elia and R. Fabbri, Rotation number and exponential dichotomy for linear hamiltonian systems: From theoretical to numerical results, J. Dynam. Differential Equations, 25 (2013), 95-120.doi: 10.1007/s10884-013-9290-9. |
[14] |
R. Ellis, Lectures on Topological Dynamics, Benjamin, New York, 1969. |
[15] |
K. Engelborghs and D. Roose, On stability of LMS methods and characteristic roots of delay differential equations, SIAM J. Numer. Anal., 40 (2002), 629-650.doi: 10.1137/S003614290037472X. |
[16] |
W. H. Enright, A new error-control for initial value solvers, Appl. Math. Comput., 31 (1989), 288-301.doi: 10.1016/0096-3003(89)90123-9. |
[17] |
J. D. Farmer, Chaotic attractors of an infinite-dimensional system, Physica D, 4 (1981/82), 366-393. doi: 10.1016/0167-2789(82)90042-2. |
[18] |
M. Fiedler, Special Matrices and Their Applications in Numerical Mathematics, Dover Publications, Inc., Mineola, New York, 2008. |
[19] |
K. Geist, U. Parlitz and W. Lauterborn, Comparison of different methods for computing Lyapunov exponents, Prog. Theor. Phys., 83 (1990), 875-893.doi: 10.1143/PTP.83.875. |
[20] |
K. Gopalsamy and X. Z. He, Stability in asymmetric Hopfield nets with transmission delays, Physica D, 76 (1994), 344-358.doi: 10.1016/0167-2789(94)90043-4. |
[21] |
S. Grossberg, Nonlinear networks: Principles, mechanisms and architectures, Neural Netw., 1 (1988), 17-61.doi: 10.1016/0893-6080(88)90021-4. |
[22] |
J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, Berlin, Heidelberg, New York, 1993.doi: 10.1007/978-1-4612-4342-7. |
[23] |
J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Nat. Acad. Sci. USA, 79 (1982), 2554-2558.doi: 10.1073/pnas.79.8.2554. |
[24] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nat. Acad. Sci. USA, 81 (1984), 2554-2558.doi: 10.1073/pnas.79.8.2554. |
[25] |
T. Insperger and G. Stépán, Semi-Discretization for Time-Delay Systems. Stability and Engineering Applications, Applied Mathematical Sciences, 178, Springer, New York, 2011.doi: 10.1007/978-1-4614-0335-7. |
[26] |
R. Johnson and F. Mantellini, Non-autonomous differential equations, in Dynamical Systems, Lecture Notes in Math., 1822, Springer, Berlin, 2003, 173-229.doi: 10.1007/978-3-540-45204-1_3. |
[27] |
R. Johnson, K. J. Palmer and G. R. Sell, Ergodic properties of linear dynamical systems, SIAM J. Math. Anal., 18 (1987), 1-33.doi: 10.1137/0518001. |
[28] |
W. Liu and E. S. Van Vleck, Exponential dichotomy for asymptotically hyperbolic two-dimensional linear systems, J. Dyn. Diff. Equat., 22 (2010), 697-722.doi: 10.1007/s10884-010-9170-5. |
[29] |
T. Luzyanina, K. Engelborghs and D. Roose, Computing stability of differential equations with bounded distributed delays, Numer. Algorithms, 34 (2003), 41-66.doi: 10.1023/A:1026194503720. |
[30] |
C. M. Marcus and R. M. Westervelt, Stability of analog neural networks with delay, Phys. Rev. A, 39 (2009), 347-359.doi: 10.1103/PhysRevA.39.347. |
[31] |
J. Mierczyński and W. Shen, Lyapunov exponents and asymptotic dynamics in random Kolmogorov models, J. Evol. Equ., 4 (2004), 371-390.doi: 10.1007/s00028-004-0160-0. |
[32] |
V. Nemytskii and V. Stepanoff, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, NJ, 1960. |
[33] |
S. Niculescu, Delay Effects on Stability, Lecture Notes in Control and Information Sciences, 269, Springer-Verlag, Berlin, Heidelberg, 2001. |
[34] |
S. Novo and R. Obaya, Non-autonomous Functional Differential Equations and Applications. in Stability and Bifurcation for Non-Autonomous Differential Equations, Lecture Notes in Math., 2065, Springer-Verlag, Berlin, Heidelberg, 2013, 185-264.doi: 10.1007/978-3-642-32906-7_4. |
[35] |
S. Novo, R. Obaya and A. M. Sanz, Stability and extensibility results for abstract skew-product semiflows, J. Differential Equations, 235 (2007), 623-646.doi: 10.1016/j.jde.2006.12.009. |
[36] |
S. Novo, R. Obaya and A. M. Sanz, Topological dynamics for monotone skew-product semiflows with applications, J. Dyn. Diff. Equat., 25 (2013), 1201-1231.doi: 10.1007/s10884-013-9337-y. |
[37] |
S. Novo, R. Obaya and A. M. Sanz, Uniform persistence and upper Lyapunov exponents for monotone skew-product semiflows, Nonlinearity, 26 (2013), 2409-2440.doi: 10.1088/0951-7715/26/9/2409. |
[38] |
S. Novo, C. Nuñez, R. Obaya and A. M. Sanz, Skew-product semiflows for non-autonomous partial functional differential equations with delay, Discret. Contin. Dyn. S., 34 (2014), 4291-4321.doi: 10.3934/dcds.2014.34.4291. |
[39] |
C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and concave skew-product semiflows I: A general theory, J. Differential Equations, 252 (2012), 5492-5517.doi: 10.1016/j.jde.2012.02.008. |
[40] |
C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and concave skew-product semiflows II: Two-dimensional systems of differential equations, J. Differential Equations, 252 (2012), 3575-3607.doi: 10.1016/j.jde.2011.11.016. |
[41] |
P. Poláčik and I. Tereščák, Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations, J. Dynamics Differential Equations, 5 (1993), 279-303.doi: 10.1007/BF01053163. |
[42] |
R. J. Sacker and G. R. Sell, Lifting properties in skew-products flows with applications to differential equations, Mem. Amer. Math. Soc., 11 (1977), iv+67 pp. |
[43] |
R. J. Sacker and G. R. Sell, A spectral theory for linear differential systems, J. Differential Equations, 27 (1978), 320-358.doi: 10.1016/0022-0396(78)90057-8. |
[44] |
R. J. Sacker and G. R. Sell, Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113 (1994), 17-67.doi: 10.1006/jdeq.1994.1113. |
[45] |
L. F. Shampine and M. W. Reichelt, The Matlab ODE suite, SIAM J. Sci. Comput., 18 (1997), 1-22.doi: 10.1137/S1064827594276424. |
[46] |
L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with Matlab, Cambridge University Press, Cambridge, New York, Port Melbourne, Madrid, Cape Town, 2003.doi: 10.1017/CBO9780511615542. |
[47] |
L. F. Shampine, Solving odes and ddes with residual control, Appl. Numer. Math., 52 (2005), 113-127.doi: 10.1016/j.apnum.2004.07.003. |
[48] |
W. Shen and Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-Product Semiflows, Mem. Amer. Math. Soc., 136, Amer. Math. Soc., Providence, 1998.doi: 10.1090/memo/0647. |
[49] |
D. E. Sigeti, Exponentia decay of power spectra at high frequency and positive Lyapunov exponents, Phys. D, 82 (1995), 136-153.doi: 10.1016/0167-2789(94)00225-F. |
[50] |
C. Skokos, The Lyapunov Characteristic Exponents and their computation, Lecture Notes in Phys., 790 (2010), 63-135.doi: 10.1007/978-3-642-04458-8_2. |
[51] |
H. L. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, 1995. |
[52] |
H. L. Smith and P. Waltman, The Theory of the Chemostat. Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, 13, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511530043. |
[53] |
H. L. Smith and H. R. Thieme, Dynamical Systems and Population Persistence, Graduate Studies in Mathematics, 118, American Mathematical Society, Providence, 2011. |
[54] |
P. van den Driessche and X. Zou, Global attractivity in delayed Hopfield neural networks models, SIAM J. Appl. Math., 58 (1998), 1878-1890.doi: 10.1137/S0036139997321219. |
[55] |
P. van den Driessche, J. Wu and X. Zou, Stabilization role of inhibitory self-connections in a delayed neural network, Physica D, 150 (2001), 84-90.doi: 10.1016/S0167-2789(00)00216-5. |
[56] |
J. Wu, Introduction to Neural Dynamics and Signal Transmission Delay, Nonlinear Analysis and Aplications, 6, Walter de Gruyter, Berlin, New York, 2001.doi: 10.1515/9783110879971. |