Advanced Search
Article Contents
Article Contents

Irreducibility and strong Feller property for stochastic evolution equations in Banach spaces

Abstract Related Papers Cited by
  • The main goal of this paper is to generalize to Banach spaces the well-known results for diffusions on Hilbert spaces obtained in [Peszat, S. and Zabczyk, J. (1995). Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23(1): 157-172.]. More precisely, we are aiming to prove the strong Feller property and irreducibility of the solutions to a stochastic evolution equations (SEEs) in Banach spaces. We give sufficient conditions on the path space and the coefficients of the SEEs for these aforementioned properties to hold. We apply our result to investigate the long-time behavior of a stochastic nonlinear heat equations on $L^p$-space with $p>4$. Our result implies the uniqueness of the invariant measure, if it exists, for the stochastic nonlinear heat equations on $L^p$-space with $p>4$.
    Mathematics Subject Classification: Primary: 60H15, 37L40; Secondary: 35R60.


    \begin{equation} \\ \end{equation}
  • [1]

    Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stochastics Rep., 61 (1997), 245-295.doi: 10.1080/17442509708834122.


    Z. Brzeźniak and D. Gatarek, Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces, Stochastic Process. Appl., 84 (1999), 187-225.doi: 10.1016/S0304-4149(99)00034-4.


    Z. Brzeźniak and S. Peszat, Space-time continuous solutions to SPDE's driven by a homogeneous Wiener process, Studia Math., 137 (1999), 261-299.


    Z. Brzeźniak and J. M. A. M. van Neerven, Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise, J. Math. Kyoto Univ., 43 (2003), 261-303.


    Z. Brzeźniak, J. M. A. M. van Neerven, M. C. Veraar and L. Weis, Itô's formula in UMD Banach spaces and regularity of solutions of the Zakai equation, J. Differential Equations, 245 (2008), 30-58.doi: 10.1016/j.jde.2008.03.026.


    Z. Brzeźniak, H. Long and I. Simão, Invariant measures for stochastic evolution equations in M-type 2 Banach spaces, J. Evol. Equ., 10 (2010), 785-810.doi: 10.1007/s00028-010-0070-2.


    H. Cartan, Differential Calculus, Translated from the French. Hermann, Paris; Houghton Mifflin Co., Boston, Mass., 1971.


    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Second Edition, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 2014.doi: 10.1017/CBO9781107295513.


    A. Chojnowska-Michalik and B. Goldys, Existence, uniqueness and invariant measures for stochastic semilinear equations in Hilbert spaces, Probab. Th. Rel. Fields, 102 (1995), 331-356.doi: 10.1007/BF01192465.


    G. Da Prato, K. D. Elworthy and J. Zabczyk, Strong Feller property for stochastic semilinear equations, Stoch. Anal. Appl., 13 (1995), 35-45.doi: 10.1080/07362999508809381.


    R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics,64. Longman Scientific & Technical, Harlow; c-opublished in the United States with John Wiley & Sons, Inc., {New York}, 1993.


    D. Gątarek and B. Dariusz, On invariant measures for diffusions on Banach spaces, Potential Anal., 7 (1997), 539-553.doi: 10.1023/A:1008663614438.


    M. Hairer and J. C. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math. (2), 164 (2006), 993-1032.doi: 10.4007/annals.2006.164.993.


    M. Hairer and J. C. Mattingly, A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs, Electron. J. Probab., 16 (2011), 658-738.doi: 10.1214/EJP.v16-875.


    P. Hájek and M. Johanis, Smooth approximations, J. Funct. Anal., 259 (1020), 561-582.doi: 10.1016/j.jfa.2010.04.020.


    A. Ichikawa, Semilinear stochastic evolution equations: Boundedness, stability and invariant measures, Stochastics, 12 (1984), 1-39.doi: 10.1080/17442508408833293.


    T. Komorowski, S. Peszat and T. Szarek, On ergodicity of some Markov processes, Ann. Probab., 38(2010), 1401-1443.doi: 10.1214/09-AOP513.


    S. Kuksin and V. Nersesyan, Stochastic CGL equations without linear dispersion in any space dimension, Stochastic Partial Differential Equations: Analysis and Computations, 1 (2013), 389-423.doi: 10.1007/s40072-013-0010-6.


    S. Kuksin and A. Shirikyan, Coupling approach to white-forced nonlinear PDEs, J. Math. Pures Appl. (9), 81 (2002), 567-602.doi: 10.1016/S0021-7824(02)01259-X.


    S. Kuksin and A. Shirikyan, Mathematics of Two-Dimensional Turbulence, Cambridge University Press, Cambridge, 2012.doi: 10.1017/CBO9781139137119.


    G. Leha and G. Ritter, Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces, Stoch. Stoch. Rep., 48 (1994), 195-225.doi: 10.1080/17442509408833906.


    J. Maas, Malliavin calculus and decoupling inequalities in Banach spaces, J. Math. Anal. Appl., 363 (2010), 383-398.doi: 10.1016/j.jmaa.2009.08.041.


    J. Maas and J. M. A. M. van Neerven, A Clark-Ocone formula in UMD Banach spaces, Electron. Commun. Probab., 13 (2008), 151-164.doi: 10.1214/ECP.v13-1361.


    B. Maslowski, Uniqueness and stability of invariant measures for stochastic differential equations in Hilbert spaces, Stoch. Stoch. Rep., 28 (1989), 85-114.doi: 10.1080/17442508908833585.


    B. Maslowski and J. Seidler, Invariant measures for nonlinear SPDEs: Uniqueness and stability, Arch. Math., 34 (1998), 153-172.


    J. M. A. M. van Neerven, Uniqueness of invariant measures for the stochastic Cauchy problem in Banach spaces, Recent advances in operator theory and related topics (Szeged, 1999), (Eds. L. Kérchy, C. Foias, I. Gohberg and H. Langer), Oper. Theory Adv. Appl. 127 (2001), Birkhäuser, Basel, 491-517.


    J. M. A. M. van Neerven and J. Zhu, A maximal inequality for stochastic convolutions in 2-smooth Banach spaces, Electron. Commun. Probab., 16 (2011), 689-705.doi: 10.1214/ECP.v16-1677.


    A. L. Neidhardt, Stochastic Integrals in 2-Uniformly Smooth Banach Spaces, PhD thesis, University of Wisconsin, 1978.


    M. Ondreját, Uniqueness for stochastic evolution equations in Banach spaces, Dissertationes Math. (Rozprawy Mat.), 426 (2004), 63pp.doi: 10.4064/dm426-0-1.


    S. Peszat and J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces, Ann. Probab., 23 (1995), 157-172.doi: 10.1214/aop/1176988381.


    G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math., 20 (1975), 326-350.doi: 10.1007/BF02760337.


    M. Pronk and M. Veraar, Tools for Malliavin calculus in UMD Banach spaces, Potential Anal., 40 (2014), 307-344.doi: 10.1007/s11118-013-9350-0.


    E. Shamarova, A version of the Hörmander-Malliavin theorem in 2-smooth Banach spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 17 (2014), 1450004, 19pp.doi: 10.1142/S0219025714500040.


    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Second edition. Johann Ambrosius Barth, Heidelberg, 1995.


    J. Zabczyk, Symmetric solutions of semilinear stochastic equations, in Stochastic partial differential equations and applications, II (Trento, 1988) (Eds. G. Da Prato and L. Tubaro), Lecture Notes in Math., 1390 (1989), Springer, Berlin, pp 237-256.doi: 10.1007/BFb0083952.


    J. Zhu, Z. Brzeźniak and E. Hausenblas, Maximal inequality of Stochastic convolution driven by compensated Poisson random measures in Banach spaces, To appear in Ann. Inst. Henri Poincar Probab. Stat. preprint, arXiv:1005.1600

  • 加载中

Article Metrics

HTML views() PDF downloads(274) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint