Citation: |
[1] |
M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75-96.doi: 10.1016/j.mbs.2004.01.003. |
[2] |
N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications, Lecture Notes in Mathematics, No. 35, Springer-Verlag, Berlin-New York, 1967. |
[3] |
V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43-61.doi: 10.1016/0025-5564(78)90006-8. |
[4] |
H. Dulac, Recherche des cycles limites, C. R. Acad. Sci. Paris, 204 (1937), 1703-1706. |
[5] |
L. Edelstein-Keshet, Mathematical Models in Biology, The Random House/Birkhäuser Mathematics Series, Random House, Inc., New York, 1988. |
[6] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.doi: 10.1137/S0036144500371907. |
[7] |
A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biol., 68 (2006), 615-626.doi: 10.1007/s11538-005-9037-9. |
[8] |
D. H. Knipl and G. Röst, Backward bifurcation in SIVS model with immigration of non-infectives, Biomath, 2 (2013), 1312051, 14pp.doi: 10.11145/j.biomath.2013.12.051. |
[9] |
M. A. Krasnoselskii, Positive Solutions of Operator Equations, P. Noordhoff Ltd. Groningen, 1964.doi: 10.11145/j.biomath.2013.12.051. |
[10] |
W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187-204.doi: 10.1007/BF00276956. |
[11] |
T. C. Reluga and J. Medlock, Resistance mechanisms matter in SIR models, Math. Biosci. Eng., 4 (2007), 553-563.doi: 10.3934/mbe.2007.4.553. |
[12] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.doi: 10.1016/S0025-5564(02)00108-6. |
[13] |
W. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.doi: 10.1016/j.mbs.2005.12.022. |
[14] |
D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419-429.doi: 10.1016/j.mbs.2006.09.025. |