June  2016, 21(4): 1101-1117. doi: 10.3934/dcdsb.2016.21.1101

Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions

1. 

Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged,, Hungary

2. 

Analysis and Stochastics Research Group, Hungarian Academy of Sciences, Bolyai Institute, University of Szeged, H-6720 Szeged, Aradi vértanúk tere 1.

Received  November 2014 Revised  September 2015 Published  March 2016

We prove the global asymptotic stability of the disease-free and the endemic equilibrium for general SIR and SIRS models with nonlinear incidence. Instead of the popular Volterra-type Lyapunov functions, we use the method of Dulac functions, which allows us to extend the previous global stability results to a wider class of SIR and SIRS systems, including nonlinear (density-dependent) removal terms as well. We show that this method is useful in cases that cannot be covered by Lyapunov functions, such as bistable situations. We completely describe the global attractor even in the scenario of a backward bifurcation, when multiple endemic equilibria coexist.
Citation: Attila Dénes, Gergely Röst. Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1101-1117. doi: 10.3934/dcdsb.2016.21.1101
References:
[1]

M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence,, Math. Biosci., 189 (2004), 75.  doi: 10.1016/j.mbs.2004.01.003.  Google Scholar

[2]

N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications,, Lecture Notes in Mathematics, (1967).   Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[4]

H. Dulac, Recherche des cycles limites,, C. R. Acad. Sci. Paris, 204 (1937), 1703.   Google Scholar

[5]

L. Edelstein-Keshet, Mathematical Models in Biology,, The Random House/Birkhäuser Mathematics Series, (1988).   Google Scholar

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[7]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615.  doi: 10.1007/s11538-005-9037-9.  Google Scholar

[8]

D. H. Knipl and G. Röst, Backward bifurcation in SIVS model with immigration of non-infectives,, Biomath, 2 (2013).  doi: 10.11145/j.biomath.2013.12.051.  Google Scholar

[9]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, P. Noordhoff Ltd. Groningen, (1964).  doi: 10.11145/j.biomath.2013.12.051.  Google Scholar

[10]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,, J. Math. Biol., 23 (1986), 187.  doi: 10.1007/BF00276956.  Google Scholar

[11]

T. C. Reluga and J. Medlock, Resistance mechanisms matter in SIR models,, Math. Biosci. Eng., 4 (2007), 553.  doi: 10.3934/mbe.2007.4.553.  Google Scholar

[12]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[13]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[14]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Math. Biosci., 208 (2007), 419.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

show all references

References:
[1]

M. E. Alexander and S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence,, Math. Biosci., 189 (2004), 75.  doi: 10.1016/j.mbs.2004.01.003.  Google Scholar

[2]

N. P. Bhatia and G. P. Szegö, Dynamical Systems: Stability Theory and Applications,, Lecture Notes in Mathematics, (1967).   Google Scholar

[3]

V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model,, Math. Biosci., 42 (1978), 43.  doi: 10.1016/0025-5564(78)90006-8.  Google Scholar

[4]

H. Dulac, Recherche des cycles limites,, C. R. Acad. Sci. Paris, 204 (1937), 1703.   Google Scholar

[5]

L. Edelstein-Keshet, Mathematical Models in Biology,, The Random House/Birkhäuser Mathematics Series, (1988).   Google Scholar

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Rev., 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[7]

A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission,, Bull. Math. Biol., 68 (2006), 615.  doi: 10.1007/s11538-005-9037-9.  Google Scholar

[8]

D. H. Knipl and G. Röst, Backward bifurcation in SIVS model with immigration of non-infectives,, Biomath, 2 (2013).  doi: 10.11145/j.biomath.2013.12.051.  Google Scholar

[9]

M. A. Krasnoselskii, Positive Solutions of Operator Equations,, P. Noordhoff Ltd. Groningen, (1964).  doi: 10.11145/j.biomath.2013.12.051.  Google Scholar

[10]

W. M. Liu, S. A. Levin and Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models,, J. Math. Biol., 23 (1986), 187.  doi: 10.1007/BF00276956.  Google Scholar

[11]

T. C. Reluga and J. Medlock, Resistance mechanisms matter in SIR models,, Math. Biosci. Eng., 4 (2007), 553.  doi: 10.3934/mbe.2007.4.553.  Google Scholar

[12]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[13]

W. Wang, Backward bifurcation of an epidemic model with treatment,, Math. Biosci., 201 (2006), 58.  doi: 10.1016/j.mbs.2005.12.022.  Google Scholar

[14]

D. Xiao and S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate,, Math. Biosci., 208 (2007), 419.  doi: 10.1016/j.mbs.2006.09.025.  Google Scholar

[1]

Marc Chamberland, Anna Cima, Armengol Gasull, Francesc Mañosas. Characterizing asymptotic stability with Dulac functions. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 59-76. doi: 10.3934/dcds.2007.17.59

[2]

Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369

[3]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability for a class of discrete SIR epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (2) : 347-361. doi: 10.3934/mbe.2010.7.347

[4]

Deqiong Ding, Wendi Qin, Xiaohua Ding. Lyapunov functions and global stability for a discretized multigroup SIR epidemic model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1971-1981. doi: 10.3934/dcdsb.2015.20.1971

[5]

Yukihiko Nakata, Yoichi Enatsu, Yoshiaki Muroya. On the global stability of an SIRS epidemic model with distributed delays. Conference Publications, 2011, 2011 (Special) : 1119-1128. doi: 10.3934/proc.2011.2011.1119

[6]

Yuming Chen, Junyuan Yang, Fengqin Zhang. The global stability of an SIRS model with infection age. Mathematical Biosciences & Engineering, 2014, 11 (3) : 449-469. doi: 10.3934/mbe.2014.11.449

[7]

Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151

[8]

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya. Global stability of SIR epidemic models with a wide class of nonlinear incidence rates and distributed delays. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 61-74. doi: 10.3934/dcdsb.2011.15.61

[9]

Geni Gupur, Xue-Zhi Li. Global stability of an age-structured SIRS epidemic model with vaccination. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 643-652. doi: 10.3934/dcdsb.2004.4.643

[10]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[11]

C. Connell McCluskey. Global stability of an $SIR$ epidemic model with delay and general nonlinear incidence. Mathematical Biosciences & Engineering, 2010, 7 (4) : 837-850. doi: 10.3934/mbe.2010.7.837

[12]

Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333

[13]

Shui-Nee Chow, Yongfeng Li. Model reference control for SIRS models. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 675-697. doi: 10.3934/dcds.2009.24.675

[14]

Yoshiaki Muroya, Toshikazu Kuniya, Yoichi Enatsu. Global stability of a delayed multi-group SIRS epidemic model with nonlinear incidence rates and relapse of infection. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3057-3091. doi: 10.3934/dcdsb.2015.20.3057

[15]

Jing-Jing Xiang, Juan Wang, Li-Ming Cai. Global stability of the dengue disease transmission models. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2217-2232. doi: 10.3934/dcdsb.2015.20.2217

[16]

Paul Georgescu, Hong Zhang, Daniel Maxin. The global stability of coexisting equilibria for three models of mutualism. Mathematical Biosciences & Engineering, 2016, 13 (1) : 101-118. doi: 10.3934/mbe.2016.13.101

[17]

Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003

[18]

Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553

[19]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[20]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]