June  2016, 21(4): 1167-1187. doi: 10.3934/dcdsb.2016.21.1167

Anisotropy in wavelet-based phase field models

1. 

Technische Universität Berlin, Institute of Mathematics, Straße des 17. Juni 136, 10623 Berlin, Germany

2. 

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom

3. 

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliff e Observatory Quarter, Woodstock Road, Oxford OX2 6GG, United Kingdom

4. 

Weierstrass Institute, Mohrenstraße 39, 10117 Berlin, Germany

Received  May 2015 Revised  January 2016 Published  March 2016

When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Citation: Maciek Korzec, Andreas Münch, Endre Süli, Barbara Wagner. Anisotropy in wavelet-based phase field models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1167-1187. doi: 10.3934/dcdsb.2016.21.1167
References:
[1]

J. W. Barrett, H. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification,, IMA J. Numer. Anal., 34 (2014), 1289. doi: 10.1093/imanum/drt044. Google Scholar

[2]

A. Braides, Gamma-Convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001. Google Scholar

[3]

E. Burman and J. Rappaz, Existence of solutions to an anisotropic phase-field model,, Math. Meth. Appl. Sci., 26 (2003), 1137. doi: 10.1002/mma.405. Google Scholar

[4]

W. K. Burton, N. Cabrera and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces,, Phil. Trans. R. Soc. Lond. A, 243 (1951), 299. doi: 10.1098/rsta.1951.0006. Google Scholar

[5]

G. Caginalp, Penrose-Fife modification of solidification equations has no freezing or melting,, Appl. Math. Lett., 5 (1992), 93. doi: 10.1016/0893-9659(92)90120-X. Google Scholar

[6]

C. Cattani, Harmonic wavelets towards the solution of nonlinear PDE,, Comp. Math. Appl., 50 (2005), 1191. doi: 10.1016/j.camwa.2005.07.001. Google Scholar

[7]

W. Dahmen, Wavelet and multiscale methods for operator equations,, Acta Num., 6 (1997), 55. doi: 10.1017/S0962492900002713. Google Scholar

[8]

I. Daubechies, Ten Lectures on Wavelets,, SIAM, (1992). doi: 10.1137/1.9781611970104. Google Scholar

[9]

J. A. Dobrosotskaya and A. L. Bertozzi, A wavelet-laplace variational technique for image deconvolution and inpainting,, IEEE Trans. Imag. Proc., 17 (2008), 657. doi: 10.1109/TIP.2008.919367. Google Scholar

[10]

J. A. Dobrosotskaya and A. L. Bertozzi, Wavelet analogue of the Ginzburg-Landau energy and its Gamma-convergence,, Interf. Free Boundaries, 12 (2010), 497. doi: 10.4171/IFB/243. Google Scholar

[11]

J. A. Dobrosotskaya and A. L. Bertozzi, Analysis of the wavelet Ginzburg-Landau energy in image applications with edges,, SIAM J. Imaging Sci., 6 (2013), 698. doi: 10.1137/100812859. Google Scholar

[12]

M. E. Glicksman, Principles of Solidification,, Springer, (2011). doi: 10.1007/978-1-4419-7344-3. Google Scholar

[13]

C. Herring, Some theorems on the free energies of crystal surfaces,, Phys. Rev., 82 (1951), 87. doi: 10.1103/PhysRev.82.87. Google Scholar

[14]

M. Holmström, Solving hyperbolic PDEs using interpolating wavelets,, SIAM J. Sci. Comput., 21 (1999), 405. doi: 10.1137/S1064827597316278. Google Scholar

[15]

M. Holmström and J. Waldén, Adaptive wavelet methods for hyperbolic PDEs,, J Sci. Comp., 13 (1998), 19. doi: 10.1023/A:1023252610346. Google Scholar

[16]

L. Jameson, A wavelet-optimized, very high order adaptive grid and order numerical method,, SIAM J. Sci. Comput., 19 (1998), 1980. doi: 10.1137/S1064827596301534. Google Scholar

[17]

A. Karma and W.-J. Rappel, Numerical simulation of three-dimensional dendritic growth,, Phys. Rev. Lett., 77 (1996). doi: 10.1103/PhysRevLett.77.4050. Google Scholar

[18]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth,, Physica D, 63 (1993), 410. doi: 10.1016/0167-2789(93)90120-P. Google Scholar

[19]

B. Li, J. Lowengrub, A. Rätz and A. Voigt, Geometric evolution laws for thin crystalline films: Modeling and numerics,, Commun. Comput. Phys., 6 (2009), 433. Google Scholar

[20]

S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way,, Academic Press, (2009). Google Scholar

[21]

G. B. McFadden, Phase-field models of solidification,, in Recent Advances in Numerical Methods for Partial Differential Equations and Applications, 306 (2002), 107. doi: 10.1090/conm/306/05251. Google Scholar

[22]

G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell and R. F. Sekerka, Phase-field models for anisotropic interfaces,, Phys. Rev. E, 48 (1993), 2016. doi: 10.1103/PhysRevE.48.2016. Google Scholar

[23]

A. Miranville, Some mathematical models in phase transitions,, DCDS-S, 7 (2014), 271. doi: 10.3934/dcdss.2014.7.271. Google Scholar

[24]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[25]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Physica D, 43 (1990), 44. doi: 10.1016/0167-2789(90)90015-H. Google Scholar

[26]

O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a ''thermodynamically consistent'' phase field model,, Physica D, 69 (1993), 107. doi: 10.1016/0167-2789(93)90183-2. Google Scholar

[27]

K. Schneider and O. V. Vasilyev, Wavelet methods in computational fluid dynamics,, Ann. Rev. Fluid Mech., 42 (2010), 473. doi: 10.1146/annurev-fluid-121108-145637. Google Scholar

[28]

I. Steinbach, Phase-field models in materials science,, Mod. Sim. Mater. Sci. Eng., 17 (2009). doi: 10.1088/0965-0393/17/7/073001. Google Scholar

[29]

O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs,, J. Comp. Phys., 138 (1997), 16. doi: 10.1006/jcph.1997.5814. Google Scholar

[30]

O. V. Vasilyev, S. Paolucci and M. Sen, A multilevel wavelet collocation method for solving partial differential equations in a finite domain,, J. Comp. Phys., 120 (1995), 33. doi: 10.1006/jcph.1995.1147. Google Scholar

[31]

S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun and G. B. McFadden, Thermodynamically-consistent phase-field models for solidification,, Physica D, 69 (1993), 189. doi: 10.1016/0167-2789(93)90189-8. Google Scholar

[32]

A. A. Wheeler, B. T. Murray and R. J. Schaefer, Computation of dendrites using a phase field model,, Physica D, 66 (1993), 243. doi: 10.1016/0167-2789(93)90242-S. Google Scholar

[33]

G. Wulff, Zur frage der geschwindigkeit des wachstums und der auflösung der krystallflächen,, Zeitschrift f. Krystall. Mineral., 34 (1901), 449. Google Scholar

[34]

S.-M. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics 133, (2004). doi: 10.1201/9780203492222. Google Scholar

show all references

References:
[1]

J. W. Barrett, H. Garcke and R. Nürnberg, Stable phase field approximations of anisotropic solidification,, IMA J. Numer. Anal., 34 (2014), 1289. doi: 10.1093/imanum/drt044. Google Scholar

[2]

A. Braides, Gamma-Convergence for Beginners,, Oxford University Press, (2002). doi: 10.1093/acprof:oso/9780198507840.001.0001. Google Scholar

[3]

E. Burman and J. Rappaz, Existence of solutions to an anisotropic phase-field model,, Math. Meth. Appl. Sci., 26 (2003), 1137. doi: 10.1002/mma.405. Google Scholar

[4]

W. K. Burton, N. Cabrera and F. C. Frank, The Growth of Crystals and the Equilibrium Structure of their Surfaces,, Phil. Trans. R. Soc. Lond. A, 243 (1951), 299. doi: 10.1098/rsta.1951.0006. Google Scholar

[5]

G. Caginalp, Penrose-Fife modification of solidification equations has no freezing or melting,, Appl. Math. Lett., 5 (1992), 93. doi: 10.1016/0893-9659(92)90120-X. Google Scholar

[6]

C. Cattani, Harmonic wavelets towards the solution of nonlinear PDE,, Comp. Math. Appl., 50 (2005), 1191. doi: 10.1016/j.camwa.2005.07.001. Google Scholar

[7]

W. Dahmen, Wavelet and multiscale methods for operator equations,, Acta Num., 6 (1997), 55. doi: 10.1017/S0962492900002713. Google Scholar

[8]

I. Daubechies, Ten Lectures on Wavelets,, SIAM, (1992). doi: 10.1137/1.9781611970104. Google Scholar

[9]

J. A. Dobrosotskaya and A. L. Bertozzi, A wavelet-laplace variational technique for image deconvolution and inpainting,, IEEE Trans. Imag. Proc., 17 (2008), 657. doi: 10.1109/TIP.2008.919367. Google Scholar

[10]

J. A. Dobrosotskaya and A. L. Bertozzi, Wavelet analogue of the Ginzburg-Landau energy and its Gamma-convergence,, Interf. Free Boundaries, 12 (2010), 497. doi: 10.4171/IFB/243. Google Scholar

[11]

J. A. Dobrosotskaya and A. L. Bertozzi, Analysis of the wavelet Ginzburg-Landau energy in image applications with edges,, SIAM J. Imaging Sci., 6 (2013), 698. doi: 10.1137/100812859. Google Scholar

[12]

M. E. Glicksman, Principles of Solidification,, Springer, (2011). doi: 10.1007/978-1-4419-7344-3. Google Scholar

[13]

C. Herring, Some theorems on the free energies of crystal surfaces,, Phys. Rev., 82 (1951), 87. doi: 10.1103/PhysRev.82.87. Google Scholar

[14]

M. Holmström, Solving hyperbolic PDEs using interpolating wavelets,, SIAM J. Sci. Comput., 21 (1999), 405. doi: 10.1137/S1064827597316278. Google Scholar

[15]

M. Holmström and J. Waldén, Adaptive wavelet methods for hyperbolic PDEs,, J Sci. Comp., 13 (1998), 19. doi: 10.1023/A:1023252610346. Google Scholar

[16]

L. Jameson, A wavelet-optimized, very high order adaptive grid and order numerical method,, SIAM J. Sci. Comput., 19 (1998), 1980. doi: 10.1137/S1064827596301534. Google Scholar

[17]

A. Karma and W.-J. Rappel, Numerical simulation of three-dimensional dendritic growth,, Phys. Rev. Lett., 77 (1996). doi: 10.1103/PhysRevLett.77.4050. Google Scholar

[18]

R. Kobayashi, Modeling and numerical simulations of dendritic crystal growth,, Physica D, 63 (1993), 410. doi: 10.1016/0167-2789(93)90120-P. Google Scholar

[19]

B. Li, J. Lowengrub, A. Rätz and A. Voigt, Geometric evolution laws for thin crystalline films: Modeling and numerics,, Commun. Comput. Phys., 6 (2009), 433. Google Scholar

[20]

S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way,, Academic Press, (2009). Google Scholar

[21]

G. B. McFadden, Phase-field models of solidification,, in Recent Advances in Numerical Methods for Partial Differential Equations and Applications, 306 (2002), 107. doi: 10.1090/conm/306/05251. Google Scholar

[22]

G. B. McFadden, A. A. Wheeler, R. J. Braun, S. R. Coriell and R. F. Sekerka, Phase-field models for anisotropic interfaces,, Phys. Rev. E, 48 (1993), 2016. doi: 10.1103/PhysRevE.48.2016. Google Scholar

[23]

A. Miranville, Some mathematical models in phase transitions,, DCDS-S, 7 (2014), 271. doi: 10.3934/dcdss.2014.7.271. Google Scholar

[24]

L. Modica, The gradient theory of phase transitions and the minimal interface criterion,, Arch. Rat. Mech. Anal., 98 (1987), 123. doi: 10.1007/BF00251230. Google Scholar

[25]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Physica D, 43 (1990), 44. doi: 10.1016/0167-2789(90)90015-H. Google Scholar

[26]

O. Penrose and P. C. Fife, On the relation between the standard phase-field model and a ''thermodynamically consistent'' phase field model,, Physica D, 69 (1993), 107. doi: 10.1016/0167-2789(93)90183-2. Google Scholar

[27]

K. Schneider and O. V. Vasilyev, Wavelet methods in computational fluid dynamics,, Ann. Rev. Fluid Mech., 42 (2010), 473. doi: 10.1146/annurev-fluid-121108-145637. Google Scholar

[28]

I. Steinbach, Phase-field models in materials science,, Mod. Sim. Mater. Sci. Eng., 17 (2009). doi: 10.1088/0965-0393/17/7/073001. Google Scholar

[29]

O. V. Vasilyev and S. Paolucci, A fast adaptive wavelet collocation algorithm for multidimensional PDEs,, J. Comp. Phys., 138 (1997), 16. doi: 10.1006/jcph.1997.5814. Google Scholar

[30]

O. V. Vasilyev, S. Paolucci and M. Sen, A multilevel wavelet collocation method for solving partial differential equations in a finite domain,, J. Comp. Phys., 120 (1995), 33. doi: 10.1006/jcph.1995.1147. Google Scholar

[31]

S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun and G. B. McFadden, Thermodynamically-consistent phase-field models for solidification,, Physica D, 69 (1993), 189. doi: 10.1016/0167-2789(93)90189-8. Google Scholar

[32]

A. A. Wheeler, B. T. Murray and R. J. Schaefer, Computation of dendrites using a phase field model,, Physica D, 66 (1993), 243. doi: 10.1016/0167-2789(93)90242-S. Google Scholar

[33]

G. Wulff, Zur frage der geschwindigkeit des wachstums und der auflösung der krystallflächen,, Zeitschrift f. Krystall. Mineral., 34 (1901), 449. Google Scholar

[34]

S.-M. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics 133, (2004). doi: 10.1201/9780203492222. Google Scholar

[1]

Antonio DeSimone, Martin Kružík. Domain patterns and hysteresis in phase-transforming solids: Analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation. Networks & Heterogeneous Media, 2013, 8 (2) : 481-499. doi: 10.3934/nhm.2013.8.481

[2]

Leonid Berlyand, Mykhailo Potomkin, Volodymyr Rybalko. Sharp interface limit in a phase field model of cell motility. Networks & Heterogeneous Media, 2017, 12 (4) : 551-590. doi: 10.3934/nhm.2017023

[3]

John M. Ball, Carlos Mora-Corral. A variational model allowing both smooth and sharp phase boundaries in solids. Communications on Pure & Applied Analysis, 2009, 8 (1) : 55-81. doi: 10.3934/cpaa.2009.8.55

[4]

José Luiz Boldrini, Gabriela Planas. A tridimensional phase-field model with convection for phase change of an alloy. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 429-450. doi: 10.3934/dcds.2005.13.429

[5]

Maciek D. Korzec, Hao Wu. Analysis and simulation for an isotropic phase-field model describing grain growth. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2227-2246. doi: 10.3934/dcdsb.2014.19.2227

[6]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[7]

Alain Miranville, Elisabetta Rocca, Giulio Schimperna, Antonio Segatti. The Penrose-Fife phase-field model with coupled dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4259-4290. doi: 10.3934/dcds.2014.34.4259

[8]

Antonio Fasano, Mario Primicerio, Andrea Tesi. A mathematical model for spaghetti cooking with free boundaries. Networks & Heterogeneous Media, 2011, 6 (1) : 37-60. doi: 10.3934/nhm.2011.6.37

[9]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[10]

Xinfu Chen, G. Caginalp, Christof Eck. A rapidly converging phase field model. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1017-1034. doi: 10.3934/dcds.2006.15.1017

[11]

Mingxin Wang, Qianying Zhang. Dynamics for the diffusive Leslie-Gower model with double free boundaries. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2591-2607. doi: 10.3934/dcds.2018109

[12]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[13]

Federico Mario Vegni. Dissipativity of a conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 949-968. doi: 10.3934/dcds.2003.9.949

[14]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[15]

A. Jiménez-Casas. Invariant regions and global existence for a phase field model. Discrete & Continuous Dynamical Systems - S, 2008, 1 (2) : 273-281. doi: 10.3934/dcdss.2008.1.273

[16]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[17]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[18]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[19]

Claudio Giorgi. Phase-field models for transition phenomena in materials with hysteresis. Discrete & Continuous Dynamical Systems - S, 2015, 8 (4) : 693-722. doi: 10.3934/dcdss.2015.8.693

[20]

Zhenhua Zhang. Asymptotic behavior of solutions to the phase-field equations with neumann boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 683-693. doi: 10.3934/cpaa.2005.4.683

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (4)
  • HTML views (0)
  • Cited by (0)

[Back to Top]