June  2016, 21(4): 1189-1202. doi: 10.3934/dcdsb.2016.21.1189

Analysis of a non-autonomous mutualism model driven by Levy jumps

1. 

Institute of mathematics, Nanjing Normal University, Nanjing 210023, China, China

2. 

Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023

Received  July 2015 Revised  November 2015 Published  March 2016

This article is concerned with a mutualism ecological model with Lévy noise. The local existence and uniqueness of a positive solution are obtained with positive initial value, and the asymptotic behavior to the problem is studied. Moreover, we show that the solution is stochastically bounded and stochastic permanence. The sufficient conditions for the system to be extinct are given and the conditions for the system to be persistence in mean are also established.
Citation: Mei Li, Hongjun Gao, Bingjun Wang. Analysis of a non-autonomous mutualism model driven by Levy jumps. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1189-1202. doi: 10.3934/dcdsb.2016.21.1189
References:
[1]

E. S. Allman and J. A. Rhodes, Mathematical Models in Biology: An Introduction, Cambridge University Press, 2004.

[2]

D. Applebaum, Lévy Processes and Stochastics Calculus, Cambridge University Press, 2009. doi: 10.1017/CBO9780511809781.

[3]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375. doi: 10.1016/j.jmaa.2012.02.043.

[4]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616. doi: 10.1016/j.na.2011.06.043.

[5]

L. J. Chen, L. J. Chen and Z. Li, Permanence of a delayed discrete mutualism model with feedback controls, Math. Comput. Model., 50 (2009), 1083-1089. doi: 10.1016/j.mcm.2009.02.015.

[6]

L. Chen and J. Chen, Nonlinear Biological Dynamical System, Science Press, Beijing, 1993.

[7]

F. D. Chen and M. S. You, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 186 (2007), 30-34. doi: 10.1016/j.amc.2006.07.085.

[8]

N. H. Du and V. H. Sam, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise, J. Math. Anal. Appl., 324 (2006), 82-97. doi: 10.1016/j.jmaa.2005.11.064.

[9]

A. Friedman, Stochastic Differential Equations and Their Applications, Academic Press, New York, 1976.

[10]

B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275. doi: 10.1086/283384.

[11]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays, J. Math. Anal. Appl., 375 (2011), 42-57. doi: 10.1016/j.jmaa.2010.08.017.

[12]

V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71. doi: 10.1016/0025-5564(92)90078-B.

[13]

J. N. Holland, D. L. DeAngelis and J. L. Bronstein, Population dynamics and mutualism: Functional responses of benefits and costs, Amer. Natur., 159 (2002), 231-244.

[14]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology., 91 (2010), 1286-1295.

[15]

N. Ikeda and S. Wantanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.

[16]

D. Q. Jiang, N. Z. Shi and X. Y. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597. doi: 10.1016/j.jmaa.2007.08.014.

[17]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling- type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498. doi: 10.1016/j.jmaa.2009.05.039.

[18]

C. Y. Ji and D. Q. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 32 (2012), 867-889. doi: 10.3934/dcds.2012.32.867.

[19]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, $3^{nd}$ edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.

[20]

F. C. Klebaner, Introduction to Stochastic Calculus with Applications, $2^{nd}$ edition, Imperial college press, London, 2012. doi: 10.1142/p821.

[21]

X. Li, A. Gray, D, Jiang and X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28. doi: 10.1016/j.jmaa.2010.10.053.

[22]

Q. Liu and Y. Liang, Persistence and extinction of a stochastic non-autonomous Gilpin-Ayala system driven by Lévy noise, Commun Nonlinear Sci. Numer. Simul., 19 (2014), 3745-3752. doi: 10.1016/j.cnsns.2014.02.027.

[23]

M. Li, H. J. Gao, C. F. Shun and Y. Z. Gong, Analysis of a mutualism model with stochastic perturbations, Int. J. Biomath., 8 (2015), 1550072, 18pp. doi: 10.1142/S1793524515500722.

[24]

Z. Lu and Y. Takeuchi, Permanence and global stability for cooperative Lotka-Volterra diffusion systems, Nonlinear. Anal., 19 (1992), 963-975. doi: 10.1016/0362-546X(92)90107-P.

[25]

M. Liu and K. Wang, Survival analysis of a stochastic cooperation system in a polluted environment, J. Biol. Syst., 19 (2011), 183-204. doi: 10.1142/S0218339011003877.

[26]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete. Contin. Dyn. Syst., 33 (2013), 2495-2522. doi: 10.3934/dcds.2013.33.2495.

[27]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl., 402 (2013), 392-403. doi: 10.1016/j.jmaa.2012.11.043.

[28]

M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750-763. doi: 10.1016/j.jmaa.2013.07.078.

[29]

X. Y. Li and X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbations, Discrete. Contin. Dyn. Syst., 24 (2009), 523-545. doi: 10.3934/dcds.2009.24.523.

[30]

R. A. Lipster, Strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228. doi: 10.1080/17442508008833146.

[31]

X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997. doi: 10.1533/9780857099402.

[32]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. doi: 10.1007/978-0-387-21830-4_7.

[33]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.

[34]

X. Mao, S. Sabais and E. Renshaw, Asymptotic behavior of stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156. doi: 10.1016/S0022-247X(03)00539-0.

[35]

Y. Takeuchi, N. H. Dub, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957. doi: 10.1016/j.jmaa.2005.11.009.

[36]

A. R. Thompson, R. M. Nisbet and R. J. Schmitt, Dynamics of mutualist populations that are demographically open, J. Anim. Ecol., 75 (2006), 1239-1251.

[37]

J. A. Yan, Lectures on Theory of Measure, Science Press, Beijing, 2004.

show all references

References:
[1]

E. S. Allman and J. A. Rhodes, Mathematical Models in Biology: An Introduction, Cambridge University Press, 2004.

[2]

D. Applebaum, Lévy Processes and Stochastics Calculus, Cambridge University Press, 2009. doi: 10.1017/CBO9780511809781.

[3]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363-375. doi: 10.1016/j.jmaa.2012.02.043.

[4]

J. Bao, X. Mao, G. Yin and C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601-6616. doi: 10.1016/j.na.2011.06.043.

[5]

L. J. Chen, L. J. Chen and Z. Li, Permanence of a delayed discrete mutualism model with feedback controls, Math. Comput. Model., 50 (2009), 1083-1089. doi: 10.1016/j.mcm.2009.02.015.

[6]

L. Chen and J. Chen, Nonlinear Biological Dynamical System, Science Press, Beijing, 1993.

[7]

F. D. Chen and M. S. You, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 186 (2007), 30-34. doi: 10.1016/j.amc.2006.07.085.

[8]

N. H. Du and V. H. Sam, Dynamics of a stochastic Lotka-Volterra model perturbed by white noise, J. Math. Anal. Appl., 324 (2006), 82-97. doi: 10.1016/j.jmaa.2005.11.064.

[9]

A. Friedman, Stochastic Differential Equations and Their Applications, Academic Press, New York, 1976.

[10]

B. S. Goh, Stability in models of mutualism, Amer. Natur., 113 (1979), 261-275. doi: 10.1086/283384.

[11]

Y. Hu, F. Wu and C. Huang, Stochastic Lotka-Volterra models with multiple delays, J. Math. Anal. Appl., 375 (2011), 42-57. doi: 10.1016/j.jmaa.2010.08.017.

[12]

V. Hutson and K. Schmitt, Permanence and the dynamics of biological systems, Math. Biosci., 111 (1992), 1-71. doi: 10.1016/0025-5564(92)90078-B.

[13]

J. N. Holland, D. L. DeAngelis and J. L. Bronstein, Population dynamics and mutualism: Functional responses of benefits and costs, Amer. Natur., 159 (2002), 231-244.

[14]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology., 91 (2010), 1286-1295.

[15]

N. Ikeda and S. Wantanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.

[16]

D. Q. Jiang, N. Z. Shi and X. Y. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008), 588-597. doi: 10.1016/j.jmaa.2007.08.014.

[17]

C. Y. Ji, D. Q. Jiang and N. Z. Shi, Analysis of a predator-prey model with modified Leslie-Gower and Holling- type II schemes with stochastic perturbation, J. Math. Anal. Appl., 359 (2009), 482-498. doi: 10.1016/j.jmaa.2009.05.039.

[18]

C. Y. Ji and D. Q. Jiang, Persistence and non-persistence of a mutualism system with stochastic perturbation, Discrete Contin. Dyn. Syst., 32 (2012), 867-889. doi: 10.3934/dcds.2012.32.867.

[19]

I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, $3^{nd}$ edition, Springer-Verlag, New York, 1991. doi: 10.1007/978-1-4612-0949-2.

[20]

F. C. Klebaner, Introduction to Stochastic Calculus with Applications, $2^{nd}$ edition, Imperial college press, London, 2012. doi: 10.1142/p821.

[21]

X. Li, A. Gray, D, Jiang and X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11-28. doi: 10.1016/j.jmaa.2010.10.053.

[22]

Q. Liu and Y. Liang, Persistence and extinction of a stochastic non-autonomous Gilpin-Ayala system driven by Lévy noise, Commun Nonlinear Sci. Numer. Simul., 19 (2014), 3745-3752. doi: 10.1016/j.cnsns.2014.02.027.

[23]

M. Li, H. J. Gao, C. F. Shun and Y. Z. Gong, Analysis of a mutualism model with stochastic perturbations, Int. J. Biomath., 8 (2015), 1550072, 18pp. doi: 10.1142/S1793524515500722.

[24]

Z. Lu and Y. Takeuchi, Permanence and global stability for cooperative Lotka-Volterra diffusion systems, Nonlinear. Anal., 19 (1992), 963-975. doi: 10.1016/0362-546X(92)90107-P.

[25]

M. Liu and K. Wang, Survival analysis of a stochastic cooperation system in a polluted environment, J. Biol. Syst., 19 (2011), 183-204. doi: 10.1142/S0218339011003877.

[26]

M. Liu and K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete. Contin. Dyn. Syst., 33 (2013), 2495-2522. doi: 10.3934/dcds.2013.33.2495.

[27]

M. Liu and K. Wang, Analysis of a stochastic autonomous mutualism model, J. Math. Anal. Appl., 402 (2013), 392-403. doi: 10.1016/j.jmaa.2012.11.043.

[28]

M. Liu and K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750-763. doi: 10.1016/j.jmaa.2013.07.078.

[29]

X. Y. Li and X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbations, Discrete. Contin. Dyn. Syst., 24 (2009), 523-545. doi: 10.3934/dcds.2009.24.523.

[30]

R. A. Lipster, Strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228. doi: 10.1080/17442508008833146.

[31]

X. R. Mao, Stochastic Differential Equations and Applications, Horwood, Chichester, 1997. doi: 10.1533/9780857099402.

[32]

R. M. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467. doi: 10.1007/978-0-387-21830-4_7.

[33]

R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, NJ, 2001.

[34]

X. Mao, S. Sabais and E. Renshaw, Asymptotic behavior of stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287 (2003), 141-156. doi: 10.1016/S0022-247X(03)00539-0.

[35]

Y. Takeuchi, N. H. Dub, N. T. Hieu and K. Sato, Evolution of predator-prey systems described by a Lotka-Volterra equation under random environment, J. Math. Anal. Appl., 323 (2006), 938-957. doi: 10.1016/j.jmaa.2005.11.009.

[36]

A. R. Thompson, R. M. Nisbet and R. J. Schmitt, Dynamics of mutualist populations that are demographically open, J. Anim. Ecol., 75 (2006), 1239-1251.

[37]

J. A. Yan, Lectures on Theory of Measure, Science Press, Beijing, 2004.

[1]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[2]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5641-5660. doi: 10.3934/dcdsb.2020371

[3]

Xia Wang, Shengqiang Liu, Libin Rong. Permanence and extinction of a non-autonomous HIV-1 model with time delays. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1783-1800. doi: 10.3934/dcdsb.2014.19.1783

[4]

Hongfu Yang, Xiaoyue Li, George Yin. Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3743-3766. doi: 10.3934/dcdsb.2016119

[5]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[6]

Huy Dinh, Harbir Antil, Yanlai Chen, Elena Cherkaev, Akil Narayan. Model reduction for fractional elliptic problems using Kato's formula. Mathematical Control and Related Fields, 2022, 12 (1) : 115-146. doi: 10.3934/mcrf.2021004

[7]

Gamaliel Blé, Carlos Cabrera. A generalization of Douady's formula. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6183-6188. doi: 10.3934/dcds.2017267

[8]

Chunyan Ji, Daqing Jiang. Persistence and non-persistence of a mutualism system with stochastic perturbation. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 867-889. doi: 10.3934/dcds.2012.32.867

[9]

Shangzhi Li, Shangjiang Guo. Persistence and extinction of a stochastic SIS epidemic model with regime switching and Lévy jumps. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 5101-5134. doi: 10.3934/dcdsb.2020335

[10]

Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069

[11]

Francisco Brito, Maria Luiza Leite, Vicente de Souza Neto. Liouville's formula under the viewpoint of minimal surfaces. Communications on Pure and Applied Analysis, 2004, 3 (1) : 41-51. doi: 10.3934/cpaa.2004.3.41

[12]

Marius Mitrea. On Bojarski's index formula for nonsmooth interfaces. Electronic Research Announcements, 1999, 5: 40-46.

[13]

Wenxiang Sun, Xueting Tian. Dominated splitting and Pesin's entropy formula. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1421-1434. doi: 10.3934/dcds.2012.32.1421

[14]

Xiaojun Huang, Jinsong Liu, Changrong Zhu. The Katok's entropy formula for amenable group actions. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4467-4482. doi: 10.3934/dcds.2018195

[15]

Katarzyna PichÓr, Ryszard Rudnicki. Stability of stochastic semigroups and applications to Stein's neuronal model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 377-385. doi: 10.3934/dcdsb.2018026

[16]

Songbai Guo, Jing-An Cui, Wanbiao Ma. An analysis approach to permanence of a delay differential equations model of microorganism flocculation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3831-3844. doi: 10.3934/dcdsb.2021208

[17]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial and Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[18]

Zachary P. Kilpatrick. Ghosts of bump attractors in stochastic neural fields: Bottlenecks and extinction. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2211-2231. doi: 10.3934/dcdsb.2016044

[19]

Xijun Hu, Penghui Wang. Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 763-784. doi: 10.3934/dcds.2016.36.763

[20]

Wan-Hua He, Chufang Wu, Jia-Wen Gu, Wai-Ki Ching, Chi-Wing Wong. Pricing vulnerable options under a jump-diffusion model with fast mean-reverting stochastic volatility. Journal of Industrial and Management Optimization, 2022, 18 (3) : 2077-2094. doi: 10.3934/jimo.2021057

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (170)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]