• Previous Article
    Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate
  • DCDS-B Home
  • This Issue
  • Next Article
    Global behavior of delay differential equations model of HIV infection with apoptosis
January  2016, 21(1): 121-131. doi: 10.3934/dcdsb.2016.21.121

Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities

1. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Catalonia, Spain

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia

Received  April 2015 Revised  June 2015 Published  November 2015

We classify the global phase portraits in the Poincaré disc of the differential systems $\dot{x}=-y+xf(x,y),$ $\dot{y}=x+yf(x,y)$, where $f(x,y)$ is a homogeneous polynomial of degree 3. These systems have a uniform isochronous center at the origin. This paper together with the results presented in [9] completes the classification of the global phase portraits in the Poincaré disc of all quartic polynomial differential systems with a uniform isochronous center at the origin.
Citation: Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121
References:
[1]

A. Algaba and M. Reyes, Characterizing isochronous points and computing isochronous sections,, J. Math. Anal. Appl., 355 (2009), 564.  doi: 10.1016/j.jmaa.2009.02.007.  Google Scholar

[2]

J. Chavarriga and M. Sabatini, A survey of isochronous centers,, Qualitative Theory of Dynamical Systems, 1 (1999), 1.  doi: 10.1007/BF02969404.  Google Scholar

[3]

A. G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations,, Lobachevskii Journal of Mathematics, 34 (2013), 212.  doi: 10.1134/S1995080213030049.  Google Scholar

[4]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbbR^2$,, Lecture Notes in Pure and Appl. Math., 152 (1994), 21.   Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Universitext, (2006).   Google Scholar

[6]

G. R. Fowles and G. L. Cassiday, Analytical Mechanics,, Thomson Brooks/Cole, (2005).   Google Scholar

[7]

E. A. González, Generic properties of polynomial vector fields at infinity,, Trans. Amer. Math. Soc., 143 (1969), 201.  doi: 10.1090/S0002-9947-1969-0252788-8.  Google Scholar

[8]

M. Han and V. G. Romanovski, Isochronicity and normal forms of polynomial systems of ODEs,, J. Symb. Comput., 47 (2012), 1163.  doi: 10.1016/j.jsc.2011.12.039.  Google Scholar

[9]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers,, J. Comp. and Appl. Math., 287 (2015), 98.  doi: 10.1016/j.cam.2015.02.046.  Google Scholar

[10]

W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers,, Contributions to Diff. Eqs., 3 (1964), 21.   Google Scholar

[11]

D. Neumann, Classification of continuous flows on 2-manifolds,, Proc. Amer. Math. Soc., 48 (1975), 73.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

show all references

References:
[1]

A. Algaba and M. Reyes, Characterizing isochronous points and computing isochronous sections,, J. Math. Anal. Appl., 355 (2009), 564.  doi: 10.1016/j.jmaa.2009.02.007.  Google Scholar

[2]

J. Chavarriga and M. Sabatini, A survey of isochronous centers,, Qualitative Theory of Dynamical Systems, 1 (1999), 1.  doi: 10.1007/BF02969404.  Google Scholar

[3]

A. G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations,, Lobachevskii Journal of Mathematics, 34 (2013), 212.  doi: 10.1134/S1995080213030049.  Google Scholar

[4]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbbR^2$,, Lecture Notes in Pure and Appl. Math., 152 (1994), 21.   Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theory of Planar Differential Systems,, Universitext, (2006).   Google Scholar

[6]

G. R. Fowles and G. L. Cassiday, Analytical Mechanics,, Thomson Brooks/Cole, (2005).   Google Scholar

[7]

E. A. González, Generic properties of polynomial vector fields at infinity,, Trans. Amer. Math. Soc., 143 (1969), 201.  doi: 10.1090/S0002-9947-1969-0252788-8.  Google Scholar

[8]

M. Han and V. G. Romanovski, Isochronicity and normal forms of polynomial systems of ODEs,, J. Symb. Comput., 47 (2012), 1163.  doi: 10.1016/j.jsc.2011.12.039.  Google Scholar

[9]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers,, J. Comp. and Appl. Math., 287 (2015), 98.  doi: 10.1016/j.cam.2015.02.046.  Google Scholar

[10]

W. S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers,, Contributions to Diff. Eqs., 3 (1964), 21.   Google Scholar

[11]

D. Neumann, Classification of continuous flows on 2-manifolds,, Proc. Amer. Math. Soc., 48 (1975), 73.  doi: 10.1090/S0002-9939-1975-0356138-6.  Google Scholar

[1]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[2]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[6]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[7]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[8]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[9]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[15]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[16]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]