June  2016, 21(4): 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

Dynamic transitions of generalized Kuramoto-Sivashinsky equation

1. 

Department of Mathematics, Indiana University, Bloomington, IN 47405, United States

Received  January 2015 Revised  September 2015 Published  March 2016

In this article, we study the dynamic transition for the one dimensional generalized Kuramoto-Sivashinsky equation with periodic condition. It is shown that if the value of the dispersive parameter $\nu$ is strictly greater than $\nu^{\ast}$, then the transition is Type-I (continuous) and the bifurcated periodic orbit is an attractor as the control parameter $\lambda$ crosses the critical value $\lambda_0$. In the case where $\nu$ is strictly less than $\nu^{\ast}$, then the transition is Type-II (jump) and the trivial solution bifurcates to a unique unstable periodic orbit as the control parameter $\lambda$ crosses the critical value $\lambda_0$. The value of $\nu^{\ast}$ is also calculated in this paper.
Citation: Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225
References:
[1]

B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues and K. Zumbrun, Nonlinear modulational stability of periodic traveling-wave solutions of the generalized kuramoto-sivashinsky equation,, Physica D, 258 (2013), 11.  doi: 10.1016/j.physd.2013.04.011.  Google Scholar

[2]

H. Dijkstra, T. Sengul and S. Wang, Dynamic transitions of surface tension driven convection,, Physica D, 247 (2013), 7.  doi: 10.1016/j.physd.2012.12.008.  Google Scholar

[3]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[4]

A. P. Hooper and R. Grimshaw, Nonlinear instabilitity at the interface between two viscous fluids,, Phys. Fluids, 28 (1985), 37.  doi: 10.1063/1.865160.  Google Scholar

[5]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theo. Phys., 55 (1976), 356.  doi: 10.1143/PTP.55.356.  Google Scholar

[6]

T. Ma and S. Wang, Stability and Bifurcation of Nonlinear Evolutions Equations,, Science Press, (2007).   Google Scholar

[7]

T. Ma and S. Wang, Cahn-hilliard equations and phase transition dynamics for binary system,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741.  doi: 10.3934/dcdsb.2009.11.741.  Google Scholar

[8]

T. Ma and S. Wang, Phase separation of binary systems,, Physica A, 388 (2009), 4811.  doi: 10.1016/j.physa.2009.07.044.  Google Scholar

[9]

T. Ma and S. Wang, Dynamic model and phase transitions for liquid helium,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2957943.  Google Scholar

[10]

T. Ma and S. Wang, Dynamic bifurcation and stability in the rayleigh-benard convection,, Commun. Math. Sci., 2 (2004), 159.  doi: 10.4310/CMS.2004.v2.n2.a2.  Google Scholar

[11]

T. Ma and S. Wang, Phase transitions for belousov-zhabotinsky reactions,, Math. Methods Appl. Sci., 34 (2011), 1381.  doi: 10.1002/mma.1446.  Google Scholar

[12]

T. Ma and S. Wang, Bifurcation Theory and Applications,, World Scientific Series on Nonlinear Science, (2005).  doi: 10.1142/9789812701152.  Google Scholar

[13]

T. Ma and S. Wang, Phase Transition Dynamics,, Springer-Verlag, (2014).  doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[14]

S. Wang and P. Yang, Remarks on the rayleigh-benard convection on spherical shells,, J. Math. Fluid Mech., 15 (2013), 537.  doi: 10.1007/s00021-012-0128-8.  Google Scholar

[15]

G. I. Sivashinsky, On flame propagation under conditions of stoichiometry,, SIAM J. Appl. Math, 39 (1980), 67.  doi: 10.1137/0139007.  Google Scholar

[16]

G. I. Sivashinsky, Instabilities, pattern-formation and turbulence in flames,, Annu. Rev. Fluid Mech., 15 (1983), 179.  doi: 10.1146/annurev.fl.15.010183.001143.  Google Scholar

show all references

References:
[1]

B. Barker, M. A. Johnson, P. Noble, L. M. Rodrigues and K. Zumbrun, Nonlinear modulational stability of periodic traveling-wave solutions of the generalized kuramoto-sivashinsky equation,, Physica D, 258 (2013), 11.  doi: 10.1016/j.physd.2013.04.011.  Google Scholar

[2]

H. Dijkstra, T. Sengul and S. Wang, Dynamic transitions of surface tension driven convection,, Physica D, 247 (2013), 7.  doi: 10.1016/j.physd.2012.12.008.  Google Scholar

[3]

D. Henry, Geometric Theory of Semilinear Parabolic Equations,, Lecture Notes in Mathematics, (1981).   Google Scholar

[4]

A. P. Hooper and R. Grimshaw, Nonlinear instabilitity at the interface between two viscous fluids,, Phys. Fluids, 28 (1985), 37.  doi: 10.1063/1.865160.  Google Scholar

[5]

Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium,, Prog. Theo. Phys., 55 (1976), 356.  doi: 10.1143/PTP.55.356.  Google Scholar

[6]

T. Ma and S. Wang, Stability and Bifurcation of Nonlinear Evolutions Equations,, Science Press, (2007).   Google Scholar

[7]

T. Ma and S. Wang, Cahn-hilliard equations and phase transition dynamics for binary system,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 741.  doi: 10.3934/dcdsb.2009.11.741.  Google Scholar

[8]

T. Ma and S. Wang, Phase separation of binary systems,, Physica A, 388 (2009), 4811.  doi: 10.1016/j.physa.2009.07.044.  Google Scholar

[9]

T. Ma and S. Wang, Dynamic model and phase transitions for liquid helium,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2957943.  Google Scholar

[10]

T. Ma and S. Wang, Dynamic bifurcation and stability in the rayleigh-benard convection,, Commun. Math. Sci., 2 (2004), 159.  doi: 10.4310/CMS.2004.v2.n2.a2.  Google Scholar

[11]

T. Ma and S. Wang, Phase transitions for belousov-zhabotinsky reactions,, Math. Methods Appl. Sci., 34 (2011), 1381.  doi: 10.1002/mma.1446.  Google Scholar

[12]

T. Ma and S. Wang, Bifurcation Theory and Applications,, World Scientific Series on Nonlinear Science, (2005).  doi: 10.1142/9789812701152.  Google Scholar

[13]

T. Ma and S. Wang, Phase Transition Dynamics,, Springer-Verlag, (2014).  doi: 10.1007/978-1-4614-8963-4.  Google Scholar

[14]

S. Wang and P. Yang, Remarks on the rayleigh-benard convection on spherical shells,, J. Math. Fluid Mech., 15 (2013), 537.  doi: 10.1007/s00021-012-0128-8.  Google Scholar

[15]

G. I. Sivashinsky, On flame propagation under conditions of stoichiometry,, SIAM J. Appl. Math, 39 (1980), 67.  doi: 10.1137/0139007.  Google Scholar

[16]

G. I. Sivashinsky, Instabilities, pattern-formation and turbulence in flames,, Annu. Rev. Fluid Mech., 15 (1983), 179.  doi: 10.1146/annurev.fl.15.010183.001143.  Google Scholar

[1]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[2]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[3]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[4]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[8]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[11]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[14]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[15]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[20]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]