June  2016, 21(4): 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity

1. 

Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States, United States

Received  May 2015 Revised  December 2015 Published  March 2016

We consider a spatially-heterogeneous generalization of a well-established model for the dynamics of the Human Immunodeficiency Virus-type 1 (HIV) within a susceptible host. The model consists of a nonlinear system of three coupled reaction-diffusion equations with parameters that may vary spatially. Upon formulating the model, we prove that it preserves the positivity of initial data and construct global-in-time solutions that are both bounded and smooth. Finally, additional results concerning the local and global asymptotic behavior of these solutions are also provided.
Citation: Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237
References:
[1]

S. Bonhoeffer, R. May, G. Shaw and M. Nowak, Virus dynamics and drug therapy,, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971.  doi: 10.1073/pnas.94.13.6971.  Google Scholar

[2]

C.-M. Brauner, D. Jolly, L. Lorenzi and R. Thiebaut, Heterogeneous viral environment in a HIV spatial model,, Discrete and Continuous Dynamical Systems - Series B, 15 (2011), 545.  doi: 10.3934/dcdsb.2011.15.545.  Google Scholar

[3]

R. Cheynier, S. Henrichwark, F. Hadida, E. Pelletier, E. Oksenhendler, B. Autran and S. Wain-Hobson, HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes,, Cell, 78 (1994), 373.  doi: 10.1016/0092-8674(94)90417-0.  Google Scholar

[4]

R. DeBoer, Understanding the failure of CD8+ vaccination against Simian/Human Immunodeficiency,, J. Virol., 81 (2007), 2838.   Google Scholar

[5]

M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain,, Annali di Matematica pura ed applicata, 165 (1993), 315.  doi: 10.1007/BF01765854.  Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[7]

S. Frost, M. Dumaurier, S. Wain-Hobson and A. Leigh Brown, Genetic drift and within-host metapopulation dynamics of HIV-1 infection,, Proc. Natl Acad. Sci. USA, 98 (2001), 6975.  doi: 10.1073/pnas.131056998.  Google Scholar

[8]

G. Funk, V. Jansen, S. Bonhoeffer and T. Killingback, Spatial model of virus-immune dynamics,, Journal of Theoretical Biology, 233 (2005), 221.  doi: 10.1016/j.jtbi.2004.10.004.  Google Scholar

[9]

F. Graw and A. Perelson, Spatial aspects of HIV infection,, in Mathematical Methods and Models in Biomedicine, (2013), 3.  doi: 10.1007/978-1-4614-4178-6_1.  Google Scholar

[10]

Z. Grossman, M. Feinberg and W. Paul, Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication,, Proc. Natl Acad. Sci. USA, 95 (1998), 6314.  doi: 10.1073/pnas.95.11.6314.  Google Scholar

[11]

A. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. Faust, H. Melrose, W. Cavert, K. Gebhard, K. Staskus, Z. Zhang, P. Dailey, H. Balfour, A. Erice and A. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue,, Science, 274 (1996), 985.  doi: 10.1126/science.274.5289.985.  Google Scholar

[12]

T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu and C. A. Hunter, Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells,, Nature, 486 (2012), 545.  doi: 10.1038/nature11098.  Google Scholar

[13]

E. Jones, P. Roemer, M. Raghupathi and S. Pankavich, Analysis and simulation of the three-component model of HIV dynamics,, SIAM Undergraduate Research Online, 7 (2014), 89.  doi: 10.1137/13S012698.  Google Scholar

[14]

K. Kreith, Criteria for positive green's functions,, Illinois J. Math., 12 (1968), 475.   Google Scholar

[15]

J. McKeating, P. Balfe, P. Clapham and R. Weiss, Recombinant CD4-selected human immunodeficiency virus type 1 variants with reduced gp120 affinity for CD4 and increased cell fusion capacity,, J Virol., 65 (1991), 4777.   Google Scholar

[16]

M. J. Miller, S. H. Wei, M. D. Cahalan and I. Parker, Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy,, Proc. Nat. Acad. Sci. USA, 100 (2003), 2604.  doi: 10.1073/pnas.2628040100.  Google Scholar

[17]

S. Miller, R. Levenson, C. Aldridge, S. Hester, D. Kenan and D. Howell, Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis,, Ultrastructural Pathology, 21 (1997), 183.  doi: 10.3109/01913129709021317.  Google Scholar

[18]

J. Murray, G. Kaufman, A. Kelleher and D. Cooper, A model of primary HIV-1 infection,, Math. Biosci., 154 (1998), 57.  doi: 10.1016/S0025-5564(98)10046-9.  Google Scholar

[19]

M. Nowak and C. Bangham, Population dynamics of immune responses to persistent viruses,, Science 272 (1996), 272 (1996), 74.  doi: 10.1126/science.272.5258.74.  Google Scholar

[20]

M. Nowak and R. May, Virus dynamics: Mathematical principles of immunology and virology,, Oxford University Press, (2000).   Google Scholar

[21]

M. Nowak and A. McMichael, How HIV defeats the immune system,, Scientific American, 273 (1995), 58.  doi: 10.1038/scientificamerican0895-58.  Google Scholar

[22]

S. Pankavich and N. Michalowski, Global classical solutions for the "one and one-half" dimensional relativistic vlasov-maxwell-fokker-planck system,, Kinetic and Related Models, 8 (2015), 169.  doi: 10.3934/krm.2015.8.169.  Google Scholar

[23]

S. Pankavich and N. Michalowski, A short proof of increased parabolic regularity,, Electronic Journal of Differential Equations, 205 (2015), 1.   Google Scholar

[24]

A. Perelson, Modeling Viral and Immune System Dynamics,, Nature Reviews, 2 (2002), 28.   Google Scholar

[25]

A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in-vivo,, SIAM Review, 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[26]

A. Perelson and R. Ribeiro, Modeling the within-host dynamics of HIV infection,, BMC Biology, 11 (2013).  doi: 10.1186/1741-7007-11-96.  Google Scholar

[27]

A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.  doi: 10.1126/science.271.5255.1582.  Google Scholar

[28]

T. Reinhart, M. Rogan, A. Amedee, M. Murphey-Corb, D. Rausch, L. Eiden and A. Haase, Tracking members of the simian immunodeficiency virus delta b670 quasispecies population in vivo at single-cell resolution,, J. Virol., 72 (1998), 113.   Google Scholar

[29]

R. Ribeiro, L. Qin, L. Chavez, D. Li, S. Self and A. Perelson, Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection,, J. Virol., 84 (2010), 6096.  doi: 10.1128/JVI.00127-10.  Google Scholar

[30]

O. Stancevic, C. N. Angstmann, J. M. Murray and B. I. Henry, Turing patterns from dynamics of early HIV infection,, Bulletin of Mathematical Biology, 75 (2013), 774.  doi: 10.1007/s11538-013-9834-5.  Google Scholar

[31]

M. C. Strain, D. D. Richman, J. K. Wong and H. Levine, Spatiotemporal dynamics of HIV propagation,, Journal of Theoretical Biology, 218 (2002), 85.  doi: 10.1006/jtbi.2002.3055.  Google Scholar

[32]

M. X. Wang, Global existence and finite time blow up for a reaction-diffusion system,, Z. Angew. Math. Phys., 51 (2000), 160.  doi: 10.1007/PL00001504.  Google Scholar

[33]

W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652.  doi: 10.1137/120872942.  Google Scholar

show all references

References:
[1]

S. Bonhoeffer, R. May, G. Shaw and M. Nowak, Virus dynamics and drug therapy,, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971.  doi: 10.1073/pnas.94.13.6971.  Google Scholar

[2]

C.-M. Brauner, D. Jolly, L. Lorenzi and R. Thiebaut, Heterogeneous viral environment in a HIV spatial model,, Discrete and Continuous Dynamical Systems - Series B, 15 (2011), 545.  doi: 10.3934/dcdsb.2011.15.545.  Google Scholar

[3]

R. Cheynier, S. Henrichwark, F. Hadida, E. Pelletier, E. Oksenhendler, B. Autran and S. Wain-Hobson, HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes,, Cell, 78 (1994), 373.  doi: 10.1016/0092-8674(94)90417-0.  Google Scholar

[4]

R. DeBoer, Understanding the failure of CD8+ vaccination against Simian/Human Immunodeficiency,, J. Virol., 81 (2007), 2838.   Google Scholar

[5]

M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain,, Annali di Matematica pura ed applicata, 165 (1993), 315.  doi: 10.1007/BF01765854.  Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998).   Google Scholar

[7]

S. Frost, M. Dumaurier, S. Wain-Hobson and A. Leigh Brown, Genetic drift and within-host metapopulation dynamics of HIV-1 infection,, Proc. Natl Acad. Sci. USA, 98 (2001), 6975.  doi: 10.1073/pnas.131056998.  Google Scholar

[8]

G. Funk, V. Jansen, S. Bonhoeffer and T. Killingback, Spatial model of virus-immune dynamics,, Journal of Theoretical Biology, 233 (2005), 221.  doi: 10.1016/j.jtbi.2004.10.004.  Google Scholar

[9]

F. Graw and A. Perelson, Spatial aspects of HIV infection,, in Mathematical Methods and Models in Biomedicine, (2013), 3.  doi: 10.1007/978-1-4614-4178-6_1.  Google Scholar

[10]

Z. Grossman, M. Feinberg and W. Paul, Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication,, Proc. Natl Acad. Sci. USA, 95 (1998), 6314.  doi: 10.1073/pnas.95.11.6314.  Google Scholar

[11]

A. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. Faust, H. Melrose, W. Cavert, K. Gebhard, K. Staskus, Z. Zhang, P. Dailey, H. Balfour, A. Erice and A. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue,, Science, 274 (1996), 985.  doi: 10.1126/science.274.5289.985.  Google Scholar

[12]

T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu and C. A. Hunter, Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells,, Nature, 486 (2012), 545.  doi: 10.1038/nature11098.  Google Scholar

[13]

E. Jones, P. Roemer, M. Raghupathi and S. Pankavich, Analysis and simulation of the three-component model of HIV dynamics,, SIAM Undergraduate Research Online, 7 (2014), 89.  doi: 10.1137/13S012698.  Google Scholar

[14]

K. Kreith, Criteria for positive green's functions,, Illinois J. Math., 12 (1968), 475.   Google Scholar

[15]

J. McKeating, P. Balfe, P. Clapham and R. Weiss, Recombinant CD4-selected human immunodeficiency virus type 1 variants with reduced gp120 affinity for CD4 and increased cell fusion capacity,, J Virol., 65 (1991), 4777.   Google Scholar

[16]

M. J. Miller, S. H. Wei, M. D. Cahalan and I. Parker, Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy,, Proc. Nat. Acad. Sci. USA, 100 (2003), 2604.  doi: 10.1073/pnas.2628040100.  Google Scholar

[17]

S. Miller, R. Levenson, C. Aldridge, S. Hester, D. Kenan and D. Howell, Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis,, Ultrastructural Pathology, 21 (1997), 183.  doi: 10.3109/01913129709021317.  Google Scholar

[18]

J. Murray, G. Kaufman, A. Kelleher and D. Cooper, A model of primary HIV-1 infection,, Math. Biosci., 154 (1998), 57.  doi: 10.1016/S0025-5564(98)10046-9.  Google Scholar

[19]

M. Nowak and C. Bangham, Population dynamics of immune responses to persistent viruses,, Science 272 (1996), 272 (1996), 74.  doi: 10.1126/science.272.5258.74.  Google Scholar

[20]

M. Nowak and R. May, Virus dynamics: Mathematical principles of immunology and virology,, Oxford University Press, (2000).   Google Scholar

[21]

M. Nowak and A. McMichael, How HIV defeats the immune system,, Scientific American, 273 (1995), 58.  doi: 10.1038/scientificamerican0895-58.  Google Scholar

[22]

S. Pankavich and N. Michalowski, Global classical solutions for the "one and one-half" dimensional relativistic vlasov-maxwell-fokker-planck system,, Kinetic and Related Models, 8 (2015), 169.  doi: 10.3934/krm.2015.8.169.  Google Scholar

[23]

S. Pankavich and N. Michalowski, A short proof of increased parabolic regularity,, Electronic Journal of Differential Equations, 205 (2015), 1.   Google Scholar

[24]

A. Perelson, Modeling Viral and Immune System Dynamics,, Nature Reviews, 2 (2002), 28.   Google Scholar

[25]

A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in-vivo,, SIAM Review, 41 (1999), 3.  doi: 10.1137/S0036144598335107.  Google Scholar

[26]

A. Perelson and R. Ribeiro, Modeling the within-host dynamics of HIV infection,, BMC Biology, 11 (2013).  doi: 10.1186/1741-7007-11-96.  Google Scholar

[27]

A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582.  doi: 10.1126/science.271.5255.1582.  Google Scholar

[28]

T. Reinhart, M. Rogan, A. Amedee, M. Murphey-Corb, D. Rausch, L. Eiden and A. Haase, Tracking members of the simian immunodeficiency virus delta b670 quasispecies population in vivo at single-cell resolution,, J. Virol., 72 (1998), 113.   Google Scholar

[29]

R. Ribeiro, L. Qin, L. Chavez, D. Li, S. Self and A. Perelson, Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection,, J. Virol., 84 (2010), 6096.  doi: 10.1128/JVI.00127-10.  Google Scholar

[30]

O. Stancevic, C. N. Angstmann, J. M. Murray and B. I. Henry, Turing patterns from dynamics of early HIV infection,, Bulletin of Mathematical Biology, 75 (2013), 774.  doi: 10.1007/s11538-013-9834-5.  Google Scholar

[31]

M. C. Strain, D. D. Richman, J. K. Wong and H. Levine, Spatiotemporal dynamics of HIV propagation,, Journal of Theoretical Biology, 218 (2002), 85.  doi: 10.1006/jtbi.2002.3055.  Google Scholar

[32]

M. X. Wang, Global existence and finite time blow up for a reaction-diffusion system,, Z. Angew. Math. Phys., 51 (2000), 160.  doi: 10.1007/PL00001504.  Google Scholar

[33]

W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652.  doi: 10.1137/120872942.  Google Scholar

[1]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[2]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Mohammad Ghani, Jingyu Li, Kaijun Zhang. Asymptotic stability of traveling fronts to a chemotaxis model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021017

[5]

Divine Wanduku. Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021005

[6]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[7]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[10]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[11]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[14]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

[15]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[16]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[17]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[18]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[19]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[20]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]