June  2016, 21(4): 1237-1257. doi: 10.3934/dcdsb.2016.21.1237

Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity

1. 

Colorado School of Mines, 1500 Illinois St, Golden, CO 80401, United States, United States

Received  May 2015 Revised  December 2015 Published  March 2016

We consider a spatially-heterogeneous generalization of a well-established model for the dynamics of the Human Immunodeficiency Virus-type 1 (HIV) within a susceptible host. The model consists of a nonlinear system of three coupled reaction-diffusion equations with parameters that may vary spatially. Upon formulating the model, we prove that it preserves the positivity of initial data and construct global-in-time solutions that are both bounded and smooth. Finally, additional results concerning the local and global asymptotic behavior of these solutions are also provided.
Citation: Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237
References:
[1]

S. Bonhoeffer, R. May, G. Shaw and M. Nowak, Virus dynamics and drug therapy,, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971. doi: 10.1073/pnas.94.13.6971. Google Scholar

[2]

C.-M. Brauner, D. Jolly, L. Lorenzi and R. Thiebaut, Heterogeneous viral environment in a HIV spatial model,, Discrete and Continuous Dynamical Systems - Series B, 15 (2011), 545. doi: 10.3934/dcdsb.2011.15.545. Google Scholar

[3]

R. Cheynier, S. Henrichwark, F. Hadida, E. Pelletier, E. Oksenhendler, B. Autran and S. Wain-Hobson, HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes,, Cell, 78 (1994), 373. doi: 10.1016/0092-8674(94)90417-0. Google Scholar

[4]

R. DeBoer, Understanding the failure of CD8+ vaccination against Simian/Human Immunodeficiency,, J. Virol., 81 (2007), 2838. Google Scholar

[5]

M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain,, Annali di Matematica pura ed applicata, 165 (1993), 315. doi: 10.1007/BF01765854. Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[7]

S. Frost, M. Dumaurier, S. Wain-Hobson and A. Leigh Brown, Genetic drift and within-host metapopulation dynamics of HIV-1 infection,, Proc. Natl Acad. Sci. USA, 98 (2001), 6975. doi: 10.1073/pnas.131056998. Google Scholar

[8]

G. Funk, V. Jansen, S. Bonhoeffer and T. Killingback, Spatial model of virus-immune dynamics,, Journal of Theoretical Biology, 233 (2005), 221. doi: 10.1016/j.jtbi.2004.10.004. Google Scholar

[9]

F. Graw and A. Perelson, Spatial aspects of HIV infection,, in Mathematical Methods and Models in Biomedicine, (2013), 3. doi: 10.1007/978-1-4614-4178-6_1. Google Scholar

[10]

Z. Grossman, M. Feinberg and W. Paul, Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication,, Proc. Natl Acad. Sci. USA, 95 (1998), 6314. doi: 10.1073/pnas.95.11.6314. Google Scholar

[11]

A. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. Faust, H. Melrose, W. Cavert, K. Gebhard, K. Staskus, Z. Zhang, P. Dailey, H. Balfour, A. Erice and A. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue,, Science, 274 (1996), 985. doi: 10.1126/science.274.5289.985. Google Scholar

[12]

T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu and C. A. Hunter, Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells,, Nature, 486 (2012), 545. doi: 10.1038/nature11098. Google Scholar

[13]

E. Jones, P. Roemer, M. Raghupathi and S. Pankavich, Analysis and simulation of the three-component model of HIV dynamics,, SIAM Undergraduate Research Online, 7 (2014), 89. doi: 10.1137/13S012698. Google Scholar

[14]

K. Kreith, Criteria for positive green's functions,, Illinois J. Math., 12 (1968), 475. Google Scholar

[15]

J. McKeating, P. Balfe, P. Clapham and R. Weiss, Recombinant CD4-selected human immunodeficiency virus type 1 variants with reduced gp120 affinity for CD4 and increased cell fusion capacity,, J Virol., 65 (1991), 4777. Google Scholar

[16]

M. J. Miller, S. H. Wei, M. D. Cahalan and I. Parker, Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy,, Proc. Nat. Acad. Sci. USA, 100 (2003), 2604. doi: 10.1073/pnas.2628040100. Google Scholar

[17]

S. Miller, R. Levenson, C. Aldridge, S. Hester, D. Kenan and D. Howell, Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis,, Ultrastructural Pathology, 21 (1997), 183. doi: 10.3109/01913129709021317. Google Scholar

[18]

J. Murray, G. Kaufman, A. Kelleher and D. Cooper, A model of primary HIV-1 infection,, Math. Biosci., 154 (1998), 57. doi: 10.1016/S0025-5564(98)10046-9. Google Scholar

[19]

M. Nowak and C. Bangham, Population dynamics of immune responses to persistent viruses,, Science 272 (1996), 272 (1996), 74. doi: 10.1126/science.272.5258.74. Google Scholar

[20]

M. Nowak and R. May, Virus dynamics: Mathematical principles of immunology and virology,, Oxford University Press, (2000). Google Scholar

[21]

M. Nowak and A. McMichael, How HIV defeats the immune system,, Scientific American, 273 (1995), 58. doi: 10.1038/scientificamerican0895-58. Google Scholar

[22]

S. Pankavich and N. Michalowski, Global classical solutions for the "one and one-half" dimensional relativistic vlasov-maxwell-fokker-planck system,, Kinetic and Related Models, 8 (2015), 169. doi: 10.3934/krm.2015.8.169. Google Scholar

[23]

S. Pankavich and N. Michalowski, A short proof of increased parabolic regularity,, Electronic Journal of Differential Equations, 205 (2015), 1. Google Scholar

[24]

A. Perelson, Modeling Viral and Immune System Dynamics,, Nature Reviews, 2 (2002), 28. Google Scholar

[25]

A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in-vivo,, SIAM Review, 41 (1999), 3. doi: 10.1137/S0036144598335107. Google Scholar

[26]

A. Perelson and R. Ribeiro, Modeling the within-host dynamics of HIV infection,, BMC Biology, 11 (2013). doi: 10.1186/1741-7007-11-96. Google Scholar

[27]

A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582. Google Scholar

[28]

T. Reinhart, M. Rogan, A. Amedee, M. Murphey-Corb, D. Rausch, L. Eiden and A. Haase, Tracking members of the simian immunodeficiency virus delta b670 quasispecies population in vivo at single-cell resolution,, J. Virol., 72 (1998), 113. Google Scholar

[29]

R. Ribeiro, L. Qin, L. Chavez, D. Li, S. Self and A. Perelson, Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection,, J. Virol., 84 (2010), 6096. doi: 10.1128/JVI.00127-10. Google Scholar

[30]

O. Stancevic, C. N. Angstmann, J. M. Murray and B. I. Henry, Turing patterns from dynamics of early HIV infection,, Bulletin of Mathematical Biology, 75 (2013), 774. doi: 10.1007/s11538-013-9834-5. Google Scholar

[31]

M. C. Strain, D. D. Richman, J. K. Wong and H. Levine, Spatiotemporal dynamics of HIV propagation,, Journal of Theoretical Biology, 218 (2002), 85. doi: 10.1006/jtbi.2002.3055. Google Scholar

[32]

M. X. Wang, Global existence and finite time blow up for a reaction-diffusion system,, Z. Angew. Math. Phys., 51 (2000), 160. doi: 10.1007/PL00001504. Google Scholar

[33]

W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652. doi: 10.1137/120872942. Google Scholar

show all references

References:
[1]

S. Bonhoeffer, R. May, G. Shaw and M. Nowak, Virus dynamics and drug therapy,, Proc. Natl. Acad. Sci. USA, 94 (1997), 6971. doi: 10.1073/pnas.94.13.6971. Google Scholar

[2]

C.-M. Brauner, D. Jolly, L. Lorenzi and R. Thiebaut, Heterogeneous viral environment in a HIV spatial model,, Discrete and Continuous Dynamical Systems - Series B, 15 (2011), 545. doi: 10.3934/dcdsb.2011.15.545. Google Scholar

[3]

R. Cheynier, S. Henrichwark, F. Hadida, E. Pelletier, E. Oksenhendler, B. Autran and S. Wain-Hobson, HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes,, Cell, 78 (1994), 373. doi: 10.1016/0092-8674(94)90417-0. Google Scholar

[4]

R. DeBoer, Understanding the failure of CD8+ vaccination against Simian/Human Immunodeficiency,, J. Virol., 81 (2007), 2838. Google Scholar

[5]

M. Escobedo and M. A. Herrero, A semilinear parabolic system in a bounded domain,, Annali di Matematica pura ed applicata, 165 (1993), 315. doi: 10.1007/BF01765854. Google Scholar

[6]

L. C. Evans, Partial Differential Equations,, Graduate Studies in Mathematics, (1998). Google Scholar

[7]

S. Frost, M. Dumaurier, S. Wain-Hobson and A. Leigh Brown, Genetic drift and within-host metapopulation dynamics of HIV-1 infection,, Proc. Natl Acad. Sci. USA, 98 (2001), 6975. doi: 10.1073/pnas.131056998. Google Scholar

[8]

G. Funk, V. Jansen, S. Bonhoeffer and T. Killingback, Spatial model of virus-immune dynamics,, Journal of Theoretical Biology, 233 (2005), 221. doi: 10.1016/j.jtbi.2004.10.004. Google Scholar

[9]

F. Graw and A. Perelson, Spatial aspects of HIV infection,, in Mathematical Methods and Models in Biomedicine, (2013), 3. doi: 10.1007/978-1-4614-4178-6_1. Google Scholar

[10]

Z. Grossman, M. Feinberg and W. Paul, Multiple modes of cellular activation and virus transmission in HIV infection: a role for chronically and latently infected cells in sustaining viral replication,, Proc. Natl Acad. Sci. USA, 95 (1998), 6314. doi: 10.1073/pnas.95.11.6314. Google Scholar

[11]

A. Haase, K. Henry, M. Zupancic, G. Sedgewick, R. Faust, H. Melrose, W. Cavert, K. Gebhard, K. Staskus, Z. Zhang, P. Dailey, H. Balfour, A. Erice and A. Perelson, Quantitative image analysis of HIV-1 infection in lymphoid tissue,, Science, 274 (1996), 985. doi: 10.1126/science.274.5289.985. Google Scholar

[12]

T. H. Harris, E. J. Banigan, D. A. Christian, C. Konradt, E. D. Tait Wojno, K. Norose, E. H. Wilson, B. John, W. Weninger, A. D. Luster, A. J. Liu and C. A. Hunter, Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells,, Nature, 486 (2012), 545. doi: 10.1038/nature11098. Google Scholar

[13]

E. Jones, P. Roemer, M. Raghupathi and S. Pankavich, Analysis and simulation of the three-component model of HIV dynamics,, SIAM Undergraduate Research Online, 7 (2014), 89. doi: 10.1137/13S012698. Google Scholar

[14]

K. Kreith, Criteria for positive green's functions,, Illinois J. Math., 12 (1968), 475. Google Scholar

[15]

J. McKeating, P. Balfe, P. Clapham and R. Weiss, Recombinant CD4-selected human immunodeficiency virus type 1 variants with reduced gp120 affinity for CD4 and increased cell fusion capacity,, J Virol., 65 (1991), 4777. Google Scholar

[16]

M. J. Miller, S. H. Wei, M. D. Cahalan and I. Parker, Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy,, Proc. Nat. Acad. Sci. USA, 100 (2003), 2604. doi: 10.1073/pnas.2628040100. Google Scholar

[17]

S. Miller, R. Levenson, C. Aldridge, S. Hester, D. Kenan and D. Howell, Identification of focal viral infections by confocal microscopy for subsequent ultrastructural analysis,, Ultrastructural Pathology, 21 (1997), 183. doi: 10.3109/01913129709021317. Google Scholar

[18]

J. Murray, G. Kaufman, A. Kelleher and D. Cooper, A model of primary HIV-1 infection,, Math. Biosci., 154 (1998), 57. doi: 10.1016/S0025-5564(98)10046-9. Google Scholar

[19]

M. Nowak and C. Bangham, Population dynamics of immune responses to persistent viruses,, Science 272 (1996), 272 (1996), 74. doi: 10.1126/science.272.5258.74. Google Scholar

[20]

M. Nowak and R. May, Virus dynamics: Mathematical principles of immunology and virology,, Oxford University Press, (2000). Google Scholar

[21]

M. Nowak and A. McMichael, How HIV defeats the immune system,, Scientific American, 273 (1995), 58. doi: 10.1038/scientificamerican0895-58. Google Scholar

[22]

S. Pankavich and N. Michalowski, Global classical solutions for the "one and one-half" dimensional relativistic vlasov-maxwell-fokker-planck system,, Kinetic and Related Models, 8 (2015), 169. doi: 10.3934/krm.2015.8.169. Google Scholar

[23]

S. Pankavich and N. Michalowski, A short proof of increased parabolic regularity,, Electronic Journal of Differential Equations, 205 (2015), 1. Google Scholar

[24]

A. Perelson, Modeling Viral and Immune System Dynamics,, Nature Reviews, 2 (2002), 28. Google Scholar

[25]

A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in-vivo,, SIAM Review, 41 (1999), 3. doi: 10.1137/S0036144598335107. Google Scholar

[26]

A. Perelson and R. Ribeiro, Modeling the within-host dynamics of HIV infection,, BMC Biology, 11 (2013). doi: 10.1186/1741-7007-11-96. Google Scholar

[27]

A. Perelson, A. Neumann, M. Markowitz, J. Leonard and D. Ho, HIV-1 dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time,, Science, 271 (1996), 1582. doi: 10.1126/science.271.5255.1582. Google Scholar

[28]

T. Reinhart, M. Rogan, A. Amedee, M. Murphey-Corb, D. Rausch, L. Eiden and A. Haase, Tracking members of the simian immunodeficiency virus delta b670 quasispecies population in vivo at single-cell resolution,, J. Virol., 72 (1998), 113. Google Scholar

[29]

R. Ribeiro, L. Qin, L. Chavez, D. Li, S. Self and A. Perelson, Estimation of the initial viral growth rate and basic reproductive number during acute HIV-1 infection,, J. Virol., 84 (2010), 6096. doi: 10.1128/JVI.00127-10. Google Scholar

[30]

O. Stancevic, C. N. Angstmann, J. M. Murray and B. I. Henry, Turing patterns from dynamics of early HIV infection,, Bulletin of Mathematical Biology, 75 (2013), 774. doi: 10.1007/s11538-013-9834-5. Google Scholar

[31]

M. C. Strain, D. D. Richman, J. K. Wong and H. Levine, Spatiotemporal dynamics of HIV propagation,, Journal of Theoretical Biology, 218 (2002), 85. doi: 10.1006/jtbi.2002.3055. Google Scholar

[32]

M. X. Wang, Global existence and finite time blow up for a reaction-diffusion system,, Z. Angew. Math. Phys., 51 (2000), 160. doi: 10.1007/PL00001504. Google Scholar

[33]

W. Wang and X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models,, SIAM J. Appl. Dyn. Syst., 11 (2012), 1652. doi: 10.1137/120872942. Google Scholar

[1]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[2]

Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure & Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509

[3]

Honglv Ma, Jin Zhang, Chengkui Zhong. Global existence and asymptotic behavior of global smooth solutions to the Kirchhoff equations with strong nonlinear damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4721-4737. doi: 10.3934/dcdsb.2019027

[4]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[5]

Kosuke Ono. Global existence and asymptotic behavior of small solutions for semilinear dissipative wave equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 651-662. doi: 10.3934/dcds.2003.9.651

[6]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[7]

Young-Pil Choi, Seung-Yeal Ha, Seok-Bae Yun. Global existence and asymptotic behavior of measure valued solutions to the kinetic Kuramoto--Daido model with inertia. Networks & Heterogeneous Media, 2013, 8 (4) : 943-968. doi: 10.3934/nhm.2013.8.943

[8]

Yongqin Liu, Shuichi Kawashima. Global existence and asymptotic behavior of solutions for quasi-linear dissipative plate equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1113-1139. doi: 10.3934/dcds.2011.29.1113

[9]

Yuming Qin, Jianlin Zhang. Global existence and asymptotic behavior of spherically symmetric solutions for the multi-dimensional infrarelativistic model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2529-2574. doi: 10.3934/cpaa.2019115

[10]

M. Grasselli, Vittorino Pata, Giovanni Prouse. Longtime behavior of a viscoelastic Timoshenko beam. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 337-348. doi: 10.3934/dcds.2004.10.337

[11]

M. Grasselli, Vittorino Pata. Longtime behavior of a homogenized model in viscoelastodynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 339-358. doi: 10.3934/dcds.1998.4.339

[12]

Zhong Tan, Zheng-An Yao. The existence and asymptotic behavior of the evolution p-Laplacian equations with strong nonlinear sources. Communications on Pure & Applied Analysis, 2004, 3 (3) : 475-490. doi: 10.3934/cpaa.2004.3.475

[13]

Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103

[14]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[15]

Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733

[16]

Ciprian G. Gal, Maurizio Grasselli. Longtime behavior of nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 145-179. doi: 10.3934/dcds.2014.34.145

[17]

Zhijian Yang, Zhiming Liu, Na Feng. Longtime behavior of the semilinear wave equation with gentle dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6557-6580. doi: 10.3934/dcds.2016084

[18]

Lie Zheng. Asymptotic behavior of solutions to the nonlinear breakage equations. Communications on Pure & Applied Analysis, 2005, 4 (2) : 463-473. doi: 10.3934/cpaa.2005.4.463

[19]

Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027

[20]

Irena Lasiecka, W. Heyman. Asymptotic behavior of solutions in nonlinear dynamic elasticity. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 237-252. doi: 10.3934/dcds.1995.1.237

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]