-
Previous Article
Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model
- DCDS-B Home
- This Issue
-
Next Article
Attractors and entropy bounds for a nonlinear RDEs with distributed delay in unbounded domains
Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer
1. | Department of Applied Mathematics, Feng Chia University, Seatwen, Taichung 40724, Taiwan |
References:
[1] |
N. Almog, Molecular mechanisms underlying tumor dormancy,, Cancer Lett., 294 (2010), 139.
doi: 10.1016/j.canlet.2010.03.004. |
[2] |
A. J. Barrett and B. N. Savani, Does chemotherapy modify the immune surveillance of hematological malignancies?, Leukemia, 23 (2009), 53.
doi: 10.1038/leu.2008.273. |
[3] |
M. J. Besser, R. Shapira-Frommer, A. J. Treves, D. Zippel, Orit Itzhaki, L. Hershkovitz, D. Levy, A. Kubi, E. Hovav, N. Chermoshniuk, B. Shalmon, I. Hardan, R. Catane, G. Markel, S. Apter, A. Ben-Nun, I. Kuchuk, A. Shimoni, A. Nagler and J. Schachter, Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients,, Clin. Cancer Res., 16 (2010), 2646.
doi: 10.1158/1078-0432.CCR-10-0041. |
[4] |
C. Bourquin, S. Schreiber, S. Beck, G. Hartmann and S. Endres, Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer,, Int. J. Cancer., 118 (2006), 2790.
doi: 10.1002/ijc.21681. |
[5] |
S. Bunimovich-Mendrazitsky, H. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer,, Bull. Math. Biol., 70 (2008), 2055.
doi: 10.1007/s11538-008-9344-z. |
[6] |
S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer,, Bull. Math. Biol., 69 (2007), 1847.
doi: 10.1007/s11538-007-9195-z. |
[7] |
F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control,, J. Theor. Biol., 247 (2007), 723.
doi: 10.1016/j.jtbi.2007.04.003. |
[8] |
D. Catovsky, S. Richards, E. Matutes, D. Oscier, M. J. S. Dyer, R. F. Bezares, A. R. Pettitt, T. Hamblin, D. W. Milligan, J. A. Child, M. S. Hamilton, C. E. Dearden, A. G. Smith, A. G. Bosanquet, Z. Davis, V. Brito-Babapulle, M, Else, R. Wade and P. Hillmen, Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial,, Lancet, 370 (2007), 230.
doi: 10.1016/S0140-6736(07)61125-8. |
[9] |
L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications, and biological interpretations,, J. Theor. Biol., 238 (2006), 841.
doi: 10.1016/j.jtbi.2005.06.037. |
[10] |
L. G. de Pillis and A. E. Radunskaya, A mathematical model of immune response to tumor invasion,, in Computational Fluid and Solid Mechanics (ed. K.J. Bathe), (2003), 1661.
doi: 10.1016/B978-008044046-0.50404-8. |
[11] |
L. G. de Pillis and A. E. Radunskaya, The dynamics of an optimally controlled tumor model: A case study,, Math. Comput. Model., 37 (2003), 1221.
doi: 10.1016/S0895-7177(03)00133-X. |
[12] |
A. Diefenbach, E. R. Jensen, A. M. Jamieson and D. H. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity,, Nature, 413 (2001), 165. Google Scholar |
[13] |
M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes,, Science, 298 (2002), 850.
doi: 10.1126/science.1076514. |
[14] |
M. E. Dudley, J. R. Wunderlich, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. M. Sherry, F. M. Marincola, S. F. Leitman, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, A. Nahvi, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma,, Immunother., 25 (2008), 243.
doi: 10.1097/00002371-200205000-00007. |
[15] |
M. E. Dudley, J. C. Yang, R. Sherry, M. S. Hughes, R. Royal, U. Kammula, P. F. Robbins, J. Huang, D. E. Citrin, S. F. Leitman, J. Wunderlich, N. P. Restifo, A. Thomasian, S. G. Downey, F. O. Smith, J. Klapper, K. Morton, C. Laurencot, D. E. White and S. A. Rosenberg, Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens,, J. Clin. Oncol., 26 (2008), 5233.
doi: 10.1200/JCO.2008.16.5449. |
[16] |
T. Fehm, V. Mueller, R. Marches, G. Klein, B. Gueckel, H. Neubauer, E. Solomayer and S. Becker, Tumor cell dormancy: Implications for the biology and treatment of breast cancer,, APMIS, 116 (2008), 742.
doi: 10.1111/j.1600-0463.2008.01047.x. |
[17] |
J. Folkman and R. Kalluri, Cancer without disease,, Nature, 427 (2004).
doi: 10.1038/427787a. |
[18] |
D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited,, Lancet Oncol., 8 (2007), 2.
doi: 10.1016/S1470-2045(06)70985-8. |
[19] |
M. Ghielmini, Multimodality therapies and optimal schedule of antibodies: rituximab in lymphoma as an example,, Hematology, 2005 (2005), 321.
doi: 10.1182/asheducation-2005.1.321. |
[20] |
H. S. Hochster, M. M. Oken, J. N. Winter, L. I. Gordon, B. G. Raphael, J. M. Bennett and P. A. Cassileth, Phase I study of fludarabine plus cyclophosphamide in patients with previously untreated low-grade lymphoma: results and and long-term follow-up-a report from the eastern cooperative oncology group,, J. Clin. Oncol., 18 (2000), 987. Google Scholar |
[21] |
M. Itik and S. P. Banks, Chaos in a three-dimensional cancer model,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 71.
doi: 10.1142/S0218127410025417. |
[22] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.
doi: 10.1007/s002850050127. |
[23] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory,, $2^{nd}$ edition, (1998).
|
[24] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,, Bull. Math. Biol., 56 (1994), 295. Google Scholar |
[25] |
H. Li, C. Wang, J. Yu, S. Cao, F. Wei, W. Zhang, Y. Han and X. Ren, Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery,, Cytotherapy, 11 (2009), 1076. Google Scholar |
[26] |
P. Lissoni, M. Chilelli, S. Villa, L. Cerizza and G. Tancini, Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial,, J. Pineal Res., 35 (2003), 12.
doi: 10.1034/j.1600-079X.2003.00032.x. |
[27] |
J. H. Machiels, R. T. Reilly, L. A. Emens, A. M. Ercolini, R. Y. Lei, D. Weintraub, F. I. Okoye and E. M. Jaffee, Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice,, Cancer Res., 61 (2001), 3689. Google Scholar |
[28] |
F. K. Nani and M. N. Oguztoreli, Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy,, IMA J. Math. Med. Biol., 11 (1994), 107.
doi: 10.1093/imammb/11.2.107. |
[29] |
A. K. Nowak, B. W. S. Robinson and R. A. Lake, Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors,, Cancer Res., 63 (2003), 4490. Google Scholar |
[30] |
J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment,, Bull. Math. Biol., 58 (1996), 425.
doi: 10.1007/BF02460591. |
[31] |
A. S. Perelson and G. Weisbuch, Immunology for physicists,, Rev. Mod. Phys., 69 (1997), 1219.
doi: 10.1103/RevModPhys.69.1219. |
[32] |
B. A. Pockaj, R. M. Sherry, J. P. Wei, J. R. Yannelli, C. S. Carter, S. F. Leitman, J. A. Carasquillo, S. M. Steinberg, S. A. Rosenberg and J. C. Yang, Localization $of ^{111}$Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response,, Cancer, 73 (1994), 1731. Google Scholar |
[33] |
R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. I. Cho, S. Antonia, S. Altiok, E. Celis and D. I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice,, J. Clin Invest., 120 (2010), 1111.
doi: 10.1172/JCI40269. |
[34] |
S. A. Rosenberg, Development of effective immunotherapy for the treatment of patients with cancer,, J. Am. Coll. Surg., 198 (2004), 685.
doi: 10.1016/j.jamcollsurg.2004.01.025. |
[35] |
S. A. Rosenberg and M. E. Dudley, Adoptive cell therapy for the treatment of patients with metastatic melanoma,, Curr. Opin. Immunol., 21 (2009), 233.
doi: 10.1016/j.coi.2009.03.002. |
[36] |
S. Suki, H. Kantarjian, V. Gandhi, E. Estey, S. O'Brien, M. Beran, M. B. Rios, W. Plunkett and M. Keating, Fludarabine and cytosine arabinoside in the treatment of refractory or relapsed acute lymphocytic leukemia,, Cancer, 72 (1993), 2155.
doi: 10.1002/1097-0142(19931001)72:7<2155::AID-CNCR2820720715>3.0.CO;2-V. |
[37] |
T. Trisilowati, S. McCue and D. Mallet, Numerical solution of an optimal control model of dendritic cell treatment of a growing tumour,, ANZIAM J., 54 (2013). Google Scholar |
[38] |
H. C. Wei, A numerical study of a mathematical model of pulsed immunotherapy for superficial bladder cancer,, Jpn. J. Ind. Appl. Math., 30 (2013), 441.
doi: 10.1007/s13160-013-0107-3. |
[39] |
H. C. Wei, S. F. Hwang, J. T. Lin and T. J. Chen, The role of initial tumor biomass size in a mathematical model of periodically pulsed chemotherapy,, Comput. Math. Appl., 61 (2011), 3117.
doi: 10.1016/j.camwa.2011.03.102. |
[40] |
H. C. Wei and J. T. Lin, Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013).
doi: 10.1142/S0218127413500685. |
show all references
References:
[1] |
N. Almog, Molecular mechanisms underlying tumor dormancy,, Cancer Lett., 294 (2010), 139.
doi: 10.1016/j.canlet.2010.03.004. |
[2] |
A. J. Barrett and B. N. Savani, Does chemotherapy modify the immune surveillance of hematological malignancies?, Leukemia, 23 (2009), 53.
doi: 10.1038/leu.2008.273. |
[3] |
M. J. Besser, R. Shapira-Frommer, A. J. Treves, D. Zippel, Orit Itzhaki, L. Hershkovitz, D. Levy, A. Kubi, E. Hovav, N. Chermoshniuk, B. Shalmon, I. Hardan, R. Catane, G. Markel, S. Apter, A. Ben-Nun, I. Kuchuk, A. Shimoni, A. Nagler and J. Schachter, Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients,, Clin. Cancer Res., 16 (2010), 2646.
doi: 10.1158/1078-0432.CCR-10-0041. |
[4] |
C. Bourquin, S. Schreiber, S. Beck, G. Hartmann and S. Endres, Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer,, Int. J. Cancer., 118 (2006), 2790.
doi: 10.1002/ijc.21681. |
[5] |
S. Bunimovich-Mendrazitsky, H. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer,, Bull. Math. Biol., 70 (2008), 2055.
doi: 10.1007/s11538-008-9344-z. |
[6] |
S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer,, Bull. Math. Biol., 69 (2007), 1847.
doi: 10.1007/s11538-007-9195-z. |
[7] |
F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control,, J. Theor. Biol., 247 (2007), 723.
doi: 10.1016/j.jtbi.2007.04.003. |
[8] |
D. Catovsky, S. Richards, E. Matutes, D. Oscier, M. J. S. Dyer, R. F. Bezares, A. R. Pettitt, T. Hamblin, D. W. Milligan, J. A. Child, M. S. Hamilton, C. E. Dearden, A. G. Smith, A. G. Bosanquet, Z. Davis, V. Brito-Babapulle, M, Else, R. Wade and P. Hillmen, Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial,, Lancet, 370 (2007), 230.
doi: 10.1016/S0140-6736(07)61125-8. |
[9] |
L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications, and biological interpretations,, J. Theor. Biol., 238 (2006), 841.
doi: 10.1016/j.jtbi.2005.06.037. |
[10] |
L. G. de Pillis and A. E. Radunskaya, A mathematical model of immune response to tumor invasion,, in Computational Fluid and Solid Mechanics (ed. K.J. Bathe), (2003), 1661.
doi: 10.1016/B978-008044046-0.50404-8. |
[11] |
L. G. de Pillis and A. E. Radunskaya, The dynamics of an optimally controlled tumor model: A case study,, Math. Comput. Model., 37 (2003), 1221.
doi: 10.1016/S0895-7177(03)00133-X. |
[12] |
A. Diefenbach, E. R. Jensen, A. M. Jamieson and D. H. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity,, Nature, 413 (2001), 165. Google Scholar |
[13] |
M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes,, Science, 298 (2002), 850.
doi: 10.1126/science.1076514. |
[14] |
M. E. Dudley, J. R. Wunderlich, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. M. Sherry, F. M. Marincola, S. F. Leitman, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, A. Nahvi, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma,, Immunother., 25 (2008), 243.
doi: 10.1097/00002371-200205000-00007. |
[15] |
M. E. Dudley, J. C. Yang, R. Sherry, M. S. Hughes, R. Royal, U. Kammula, P. F. Robbins, J. Huang, D. E. Citrin, S. F. Leitman, J. Wunderlich, N. P. Restifo, A. Thomasian, S. G. Downey, F. O. Smith, J. Klapper, K. Morton, C. Laurencot, D. E. White and S. A. Rosenberg, Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens,, J. Clin. Oncol., 26 (2008), 5233.
doi: 10.1200/JCO.2008.16.5449. |
[16] |
T. Fehm, V. Mueller, R. Marches, G. Klein, B. Gueckel, H. Neubauer, E. Solomayer and S. Becker, Tumor cell dormancy: Implications for the biology and treatment of breast cancer,, APMIS, 116 (2008), 742.
doi: 10.1111/j.1600-0463.2008.01047.x. |
[17] |
J. Folkman and R. Kalluri, Cancer without disease,, Nature, 427 (2004).
doi: 10.1038/427787a. |
[18] |
D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited,, Lancet Oncol., 8 (2007), 2.
doi: 10.1016/S1470-2045(06)70985-8. |
[19] |
M. Ghielmini, Multimodality therapies and optimal schedule of antibodies: rituximab in lymphoma as an example,, Hematology, 2005 (2005), 321.
doi: 10.1182/asheducation-2005.1.321. |
[20] |
H. S. Hochster, M. M. Oken, J. N. Winter, L. I. Gordon, B. G. Raphael, J. M. Bennett and P. A. Cassileth, Phase I study of fludarabine plus cyclophosphamide in patients with previously untreated low-grade lymphoma: results and and long-term follow-up-a report from the eastern cooperative oncology group,, J. Clin. Oncol., 18 (2000), 987. Google Scholar |
[21] |
M. Itik and S. P. Banks, Chaos in a three-dimensional cancer model,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 71.
doi: 10.1142/S0218127410025417. |
[22] |
D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction,, J. Math. Biol., 37 (1998), 235.
doi: 10.1007/s002850050127. |
[23] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory,, $2^{nd}$ edition, (1998).
|
[24] |
V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis,, Bull. Math. Biol., 56 (1994), 295. Google Scholar |
[25] |
H. Li, C. Wang, J. Yu, S. Cao, F. Wei, W. Zhang, Y. Han and X. Ren, Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery,, Cytotherapy, 11 (2009), 1076. Google Scholar |
[26] |
P. Lissoni, M. Chilelli, S. Villa, L. Cerizza and G. Tancini, Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial,, J. Pineal Res., 35 (2003), 12.
doi: 10.1034/j.1600-079X.2003.00032.x. |
[27] |
J. H. Machiels, R. T. Reilly, L. A. Emens, A. M. Ercolini, R. Y. Lei, D. Weintraub, F. I. Okoye and E. M. Jaffee, Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice,, Cancer Res., 61 (2001), 3689. Google Scholar |
[28] |
F. K. Nani and M. N. Oguztoreli, Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy,, IMA J. Math. Med. Biol., 11 (1994), 107.
doi: 10.1093/imammb/11.2.107. |
[29] |
A. K. Nowak, B. W. S. Robinson and R. A. Lake, Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors,, Cancer Res., 63 (2003), 4490. Google Scholar |
[30] |
J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment,, Bull. Math. Biol., 58 (1996), 425.
doi: 10.1007/BF02460591. |
[31] |
A. S. Perelson and G. Weisbuch, Immunology for physicists,, Rev. Mod. Phys., 69 (1997), 1219.
doi: 10.1103/RevModPhys.69.1219. |
[32] |
B. A. Pockaj, R. M. Sherry, J. P. Wei, J. R. Yannelli, C. S. Carter, S. F. Leitman, J. A. Carasquillo, S. M. Steinberg, S. A. Rosenberg and J. C. Yang, Localization $of ^{111}$Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response,, Cancer, 73 (1994), 1731. Google Scholar |
[33] |
R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. I. Cho, S. Antonia, S. Altiok, E. Celis and D. I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice,, J. Clin Invest., 120 (2010), 1111.
doi: 10.1172/JCI40269. |
[34] |
S. A. Rosenberg, Development of effective immunotherapy for the treatment of patients with cancer,, J. Am. Coll. Surg., 198 (2004), 685.
doi: 10.1016/j.jamcollsurg.2004.01.025. |
[35] |
S. A. Rosenberg and M. E. Dudley, Adoptive cell therapy for the treatment of patients with metastatic melanoma,, Curr. Opin. Immunol., 21 (2009), 233.
doi: 10.1016/j.coi.2009.03.002. |
[36] |
S. Suki, H. Kantarjian, V. Gandhi, E. Estey, S. O'Brien, M. Beran, M. B. Rios, W. Plunkett and M. Keating, Fludarabine and cytosine arabinoside in the treatment of refractory or relapsed acute lymphocytic leukemia,, Cancer, 72 (1993), 2155.
doi: 10.1002/1097-0142(19931001)72:7<2155::AID-CNCR2820720715>3.0.CO;2-V. |
[37] |
T. Trisilowati, S. McCue and D. Mallet, Numerical solution of an optimal control model of dendritic cell treatment of a growing tumour,, ANZIAM J., 54 (2013). Google Scholar |
[38] |
H. C. Wei, A numerical study of a mathematical model of pulsed immunotherapy for superficial bladder cancer,, Jpn. J. Ind. Appl. Math., 30 (2013), 441.
doi: 10.1007/s13160-013-0107-3. |
[39] |
H. C. Wei, S. F. Hwang, J. T. Lin and T. J. Chen, The role of initial tumor biomass size in a mathematical model of periodically pulsed chemotherapy,, Comput. Math. Appl., 61 (2011), 3117.
doi: 10.1016/j.camwa.2011.03.102. |
[40] |
H. C. Wei and J. T. Lin, Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013).
doi: 10.1142/S0218127413500685. |
[1] |
Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 |
[2] |
Ben Sheller, Domenico D'Alessandro. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1037-1053. doi: 10.3934/mbe.2015.12.1037 |
[3] |
Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036 |
[4] |
Sergio Amat, Pablo Pedregal. On a variational approach for the analysis and numerical simulation of ODEs. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1275-1291. doi: 10.3934/dcds.2013.33.1275 |
[5] |
Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 |
[6] |
Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete & Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 |
[7] |
Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda. Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks & Heterogeneous Media, 2010, 5 (4) : 813-847. doi: 10.3934/nhm.2010.5.813 |
[8] |
Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427 |
[9] |
Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020138 |
[10] |
Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163 |
[11] |
José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 |
[12] |
Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933 |
[13] |
Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273 |
[14] |
Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 |
[15] |
Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028 |
[16] |
Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i |
[17] |
Xiaoli Yang, Jin Liang, Bei Hu. Minimization of carbon abatement cost: Modeling, analysis and simulation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2939-2969. doi: 10.3934/dcdsb.2017158 |
[18] |
Heiko Enderling, Alexander R.A. Anderson, Mark A.J. Chaplain, Glenn W.A. Rowe. Visualisation of the numerical solution of partial differential equation systems in three space dimensions and its importance for mathematical models in biology. Mathematical Biosciences & Engineering, 2006, 3 (4) : 571-582. doi: 10.3934/mbe.2006.3.571 |
[19] |
Kimberly Fessel, Jeffrey B. Gaither, Julie K. Bower, Trudy Gaillard, Kwame Osei, Grzegorz A. Rempała. Mathematical analysis of a model for glucose regulation. Mathematical Biosciences & Engineering, 2016, 13 (1) : 83-99. doi: 10.3934/mbe.2016.13.83 |
[20] |
Sun Yi, Patrick W. Nelson, A. Galip Ulsoy. Delay differential equations via the matrix lambert w function and bifurcation analysis: application to machine tool chatter. Mathematical Biosciences & Engineering, 2007, 4 (2) : 355-368. doi: 10.3934/mbe.2007.4.355 |
2018 Impact Factor: 1.008
Tools
Metrics
Other articles
by authors
[Back to Top]