# American Institute of Mathematical Sciences

• Previous Article
Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model
• DCDS-B Home
• This Issue
• Next Article
Attractors and entropy bounds for a nonlinear RDEs with distributed delay in unbounded domains
June  2016, 21(4): 1279-1295. doi: 10.3934/dcdsb.2016.21.1279

## Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer

 1 Department of Applied Mathematics, Feng Chia University, Seatwen, Taichung 40724, Taiwan

Received  January 2015 Revised  November 2015 Published  March 2016

In this study, a previously published mathematical model of mixed immunotherapy and chemotherapy of tumors is considered. The stability analysis of the tumor-free equilibrium obtained in the previous study of this model is flawed. In this paper, a suitable analysis is performed to correct this error, and the parameter conditions for the stability of the tumor-free equilibrium are obtained. The stability condition gives an indicator of the host's ability to fight a cancer. The parameter conditions are examined using experimental data from clinical studies to show that the immune system is able to control a small tumor, and the host's ability to fight a cancer depends on individual variation. A numerical method based on the continuation technique is employed for one-parameter bifurcation analysis of the mathematical model with periodically pulsed therapies. The unstable fixed point curve provides a good approximation of the maximum tumor burden as a function of the dosage. Chemotherapy-induced lymphocyte damage, which may cause treatment failure, is observed in the numerical simulation. The numerical method also produces a set of combined chemotherapy and immunotherapy dosages from which an efficient and safe combination of dosages can be determined.
Citation: Hsiu-Chuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1279-1295. doi: 10.3934/dcdsb.2016.21.1279
##### References:
 [1] N. Almog, Molecular mechanisms underlying tumor dormancy, Cancer Lett., 294 (2010), 139-146. doi: 10.1016/j.canlet.2010.03.004. [2] A. J. Barrett and B. N. Savani, Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia, 23 (2009), 53-58. doi: 10.1038/leu.2008.273. [3] M. J. Besser, R. Shapira-Frommer, A. J. Treves, D. Zippel, Orit Itzhaki, L. Hershkovitz, D. Levy, A. Kubi, E. Hovav, N. Chermoshniuk, B. Shalmon, I. Hardan, R. Catane, G. Markel, S. Apter, A. Ben-Nun, I. Kuchuk, A. Shimoni, A. Nagler and J. Schachter, Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients, Clin. Cancer Res., 16 (2010), 2646-2655. doi: 10.1158/1078-0432.CCR-10-0041. [4] C. Bourquin, S. Schreiber, S. Beck, G. Hartmann and S. Endres, Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer, Int. J. Cancer., 118 (2006), 2790-2795. doi: 10.1002/ijc.21681. [5] S. Bunimovich-Mendrazitsky, H. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull. Math. Biol., 70 (2008), 2055-2076. doi: 10.1007/s11538-008-9344-z. [6] S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer, Bull. Math. Biol., 69 (2007), 1847-1870. doi: 10.1007/s11538-007-9195-z. [7] F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732. doi: 10.1016/j.jtbi.2007.04.003. [8] D. Catovsky, S. Richards, E. Matutes, D. Oscier, M. J. S. Dyer, R. F. Bezares, A. R. Pettitt, T. Hamblin, D. W. Milligan, J. A. Child, M. S. Hamilton, C. E. Dearden, A. G. Smith, A. G. Bosanquet, Z. Davis, V. Brito-Babapulle, M, Else, R. Wade and P. Hillmen, Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial, Lancet, 370 (2007), 230-239. doi: 10.1016/S0140-6736(07)61125-8. [9] L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications, and biological interpretations, J. Theor. Biol., 238 (2006), 841-862. doi: 10.1016/j.jtbi.2005.06.037. [10] L. G. de Pillis and A. E. Radunskaya, A mathematical model of immune response to tumor invasion, in Computational Fluid and Solid Mechanics (ed. K.J. Bathe), MIT Press, Cambridge, MA, (2003), 1661-1668. doi: 10.1016/B978-008044046-0.50404-8. [11] L. G. de Pillis and A. E. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Math. Comput. Model., 37 (2003), 1221-1244. doi: 10.1016/S0895-7177(03)00133-X. [12] A. Diefenbach, E. R. Jensen, A. M. Jamieson and D. H. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity, Nature, 413 (2001), 165-171. [13] M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, 298 (2002), 850-854. doi: 10.1126/science.1076514. [14] M. E. Dudley, J. R. Wunderlich, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. M. Sherry, F. M. Marincola, S. F. Leitman, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, A. Nahvi, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma, Immunother., 25 (2008), 243-251. doi: 10.1097/00002371-200205000-00007. [15] M. E. Dudley, J. C. Yang, R. Sherry, M. S. Hughes, R. Royal, U. Kammula, P. F. Robbins, J. Huang, D. E. Citrin, S. F. Leitman, J. Wunderlich, N. P. Restifo, A. Thomasian, S. G. Downey, F. O. Smith, J. Klapper, K. Morton, C. Laurencot, D. E. White and S. A. Rosenberg, Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens, J. Clin. Oncol., 26 (2008), 5233-5239. doi: 10.1200/JCO.2008.16.5449. [16] T. Fehm, V. Mueller, R. Marches, G. Klein, B. Gueckel, H. Neubauer, E. Solomayer and S. Becker, Tumor cell dormancy: Implications for the biology and treatment of breast cancer, APMIS, 116 (2008), 742-753. doi: 10.1111/j.1600-0463.2008.01047.x. [17] J. Folkman and R. Kalluri, Cancer without disease, Nature, 427 (2004), p787. doi: 10.1038/427787a. [18] D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncol., 8 (2007), 2-3. doi: 10.1016/S1470-2045(06)70985-8. [19] M. Ghielmini, Multimodality therapies and optimal schedule of antibodies: rituximab in lymphoma as an example, Hematology, 2005 (2005), 321-328. doi: 10.1182/asheducation-2005.1.321. [20] H. S. Hochster, M. M. Oken, J. N. Winter, L. I. Gordon, B. G. Raphael, J. M. Bennett and P. A. Cassileth, Phase I study of fludarabine plus cyclophosphamide in patients with previously untreated low-grade lymphoma: results and and long-term follow-up-a report from the eastern cooperative oncology group, J. Clin. Oncol., 18 (2000), 987-994. [21] M. Itik and S. P. Banks, Chaos in a three-dimensional cancer model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 71-79. doi: 10.1142/S0218127410025417. [22] D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252. doi: 10.1007/s002850050127. [23] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, $2^{nd}$ edition, Springer-Verlag, New York, 1998. [24] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. [25] H. Li, C. Wang, J. Yu, S. Cao, F. Wei, W. Zhang, Y. Han and X. Ren, Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery, Cytotherapy, 11 (2009), 1076-1083. [26] P. Lissoni, M. Chilelli, S. Villa, L. Cerizza and G. Tancini, Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial, J. Pineal Res., 35 (2003), 12-15. doi: 10.1034/j.1600-079X.2003.00032.x. [27] J. H. Machiels, R. T. Reilly, L. A. Emens, A. M. Ercolini, R. Y. Lei, D. Weintraub, F. I. Okoye and E. M. Jaffee, Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice, Cancer Res., 61 (2001), 3689-3697. [28] F. K. Nani and M. N. Oguztoreli, Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy, IMA J. Math. Med. Biol., 11 (1994), 107-147. doi: 10.1093/imammb/11.2.107. [29] A. K. Nowak, B. W. S. Robinson and R. A. Lake, Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors, Cancer Res., 63 (2003), 4490-4496. [30] J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58 (1996), 425-447. doi: 10.1007/BF02460591. [31] A. S. Perelson and G. Weisbuch, Immunology for physicists, Rev. Mod. Phys., 69 (1997), 1219-1268. doi: 10.1103/RevModPhys.69.1219. [32] B. A. Pockaj, R. M. Sherry, J. P. Wei, J. R. Yannelli, C. S. Carter, S. F. Leitman, J. A. Carasquillo, S. M. Steinberg, S. A. Rosenberg and J. C. Yang, Localization $of ^{111}$Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response, Cancer, 73 (1994), 1731-1737. [33] R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. I. Cho, S. Antonia, S. Altiok, E. Celis and D. I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice, J. Clin Invest., 120 (2010), 1111-1124. doi: 10.1172/JCI40269. [34] S. A. Rosenberg, Development of effective immunotherapy for the treatment of patients with cancer, J. Am. Coll. Surg., 198 (2004), 685-696. doi: 10.1016/j.jamcollsurg.2004.01.025. [35] S. A. Rosenberg and M. E. Dudley, Adoptive cell therapy for the treatment of patients with metastatic melanoma, Curr. Opin. Immunol., 21 (2009), 233-240. doi: 10.1016/j.coi.2009.03.002. [36] S. Suki, H. Kantarjian, V. Gandhi, E. Estey, S. O'Brien, M. Beran, M. B. Rios, W. Plunkett and M. Keating, Fludarabine and cytosine arabinoside in the treatment of refractory or relapsed acute lymphocytic leukemia, Cancer, 72 (1993), 2155-2160. doi: 10.1002/1097-0142(19931001)72:7<2155::AID-CNCR2820720715>3.0.CO;2-V. [37] T. Trisilowati, S. McCue and D. Mallet, Numerical solution of an optimal control model of dendritic cell treatment of a growing tumour, ANZIAM J., 54 (2013), C664-C680. [38] H. C. Wei, A numerical study of a mathematical model of pulsed immunotherapy for superficial bladder cancer, Jpn. J. Ind. Appl. Math., 30 (2013), 441-452. doi: 10.1007/s13160-013-0107-3. [39] H. C. Wei, S. F. Hwang, J. T. Lin and T. J. Chen, The role of initial tumor biomass size in a mathematical model of periodically pulsed chemotherapy, Comput. Math. Appl., 61 (2011), 3117-3127. doi: 10.1016/j.camwa.2011.03.102. [40] H. C. Wei and J. T. Lin, Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350068, 13 pp. doi: 10.1142/S0218127413500685.

show all references

##### References:
 [1] N. Almog, Molecular mechanisms underlying tumor dormancy, Cancer Lett., 294 (2010), 139-146. doi: 10.1016/j.canlet.2010.03.004. [2] A. J. Barrett and B. N. Savani, Does chemotherapy modify the immune surveillance of hematological malignancies? Leukemia, 23 (2009), 53-58. doi: 10.1038/leu.2008.273. [3] M. J. Besser, R. Shapira-Frommer, A. J. Treves, D. Zippel, Orit Itzhaki, L. Hershkovitz, D. Levy, A. Kubi, E. Hovav, N. Chermoshniuk, B. Shalmon, I. Hardan, R. Catane, G. Markel, S. Apter, A. Ben-Nun, I. Kuchuk, A. Shimoni, A. Nagler and J. Schachter, Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients, Clin. Cancer Res., 16 (2010), 2646-2655. doi: 10.1158/1078-0432.CCR-10-0041. [4] C. Bourquin, S. Schreiber, S. Beck, G. Hartmann and S. Endres, Immunotherapy with dendritic cells and CpG oligonucleotides can be combined with chemotherapy without loss of efficacy in a mouse model of colon cancer, Int. J. Cancer., 118 (2006), 2790-2795. doi: 10.1002/ijc.21681. [5] S. Bunimovich-Mendrazitsky, H. Byrne and L. Stone, Mathematical model of pulsed immunotherapy for superficial bladder cancer, Bull. Math. Biol., 70 (2008), 2055-2076. doi: 10.1007/s11538-008-9344-z. [6] S. Bunimovich-Mendrazitsky, E. Shochat and L. Stone, Mathematical model of BCG immunotherapy in superficial bladder cancer, Bull. Math. Biol., 69 (2007), 1847-1870. doi: 10.1007/s11538-007-9195-z. [7] F. Castiglione and B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723-732. doi: 10.1016/j.jtbi.2007.04.003. [8] D. Catovsky, S. Richards, E. Matutes, D. Oscier, M. J. S. Dyer, R. F. Bezares, A. R. Pettitt, T. Hamblin, D. W. Milligan, J. A. Child, M. S. Hamilton, C. E. Dearden, A. G. Smith, A. G. Bosanquet, Z. Davis, V. Brito-Babapulle, M, Else, R. Wade and P. Hillmen, Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): a randomised controlled trial, Lancet, 370 (2007), 230-239. doi: 10.1016/S0140-6736(07)61125-8. [9] L. G. de Pillis, W. Gu and A. E. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: Modeling, applications, and biological interpretations, J. Theor. Biol., 238 (2006), 841-862. doi: 10.1016/j.jtbi.2005.06.037. [10] L. G. de Pillis and A. E. Radunskaya, A mathematical model of immune response to tumor invasion, in Computational Fluid and Solid Mechanics (ed. K.J. Bathe), MIT Press, Cambridge, MA, (2003), 1661-1668. doi: 10.1016/B978-008044046-0.50404-8. [11] L. G. de Pillis and A. E. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Math. Comput. Model., 37 (2003), 1221-1244. doi: 10.1016/S0895-7177(03)00133-X. [12] A. Diefenbach, E. R. Jensen, A. M. Jamieson and D. H. Raulet, Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity, Nature, 413 (2001), 165-171. [13] M. E. Dudley, J. R. Wunderlich, P. F. Robbins, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. Sherry, N. P. Restifo, A. M. Hubicki, M. R. Robinson, M. Raffeld, P. Duray, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, 298 (2002), 850-854. doi: 10.1126/science.1076514. [14] M. E. Dudley, J. R. Wunderlich, J. C. Yang, P. Hwu, D. J. Schwartzentruber, S. L. Topalian, R. M. Sherry, F. M. Marincola, S. F. Leitman, C. A. Seipp, L. Rogers-Freezer, K. E. Morton, A. Nahvi, S. A. Mavroukakis, D. E. White and S. A. Rosenberg, A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma, Immunother., 25 (2008), 243-251. doi: 10.1097/00002371-200205000-00007. [15] M. E. Dudley, J. C. Yang, R. Sherry, M. S. Hughes, R. Royal, U. Kammula, P. F. Robbins, J. Huang, D. E. Citrin, S. F. Leitman, J. Wunderlich, N. P. Restifo, A. Thomasian, S. G. Downey, F. O. Smith, J. Klapper, K. Morton, C. Laurencot, D. E. White and S. A. Rosenberg, Adoptive cell therapy for patients with metastatic melanoma: Evaluation of intensive myeloablative chemoradiation preparative regimens, J. Clin. Oncol., 26 (2008), 5233-5239. doi: 10.1200/JCO.2008.16.5449. [16] T. Fehm, V. Mueller, R. Marches, G. Klein, B. Gueckel, H. Neubauer, E. Solomayer and S. Becker, Tumor cell dormancy: Implications for the biology and treatment of breast cancer, APMIS, 116 (2008), 742-753. doi: 10.1111/j.1600-0463.2008.01047.x. [17] J. Folkman and R. Kalluri, Cancer without disease, Nature, 427 (2004), p787. doi: 10.1038/427787a. [18] D. I. Gabrilovich, Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited, Lancet Oncol., 8 (2007), 2-3. doi: 10.1016/S1470-2045(06)70985-8. [19] M. Ghielmini, Multimodality therapies and optimal schedule of antibodies: rituximab in lymphoma as an example, Hematology, 2005 (2005), 321-328. doi: 10.1182/asheducation-2005.1.321. [20] H. S. Hochster, M. M. Oken, J. N. Winter, L. I. Gordon, B. G. Raphael, J. M. Bennett and P. A. Cassileth, Phase I study of fludarabine plus cyclophosphamide in patients with previously untreated low-grade lymphoma: results and and long-term follow-up-a report from the eastern cooperative oncology group, J. Clin. Oncol., 18 (2000), 987-994. [21] M. Itik and S. P. Banks, Chaos in a three-dimensional cancer model, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 71-79. doi: 10.1142/S0218127410025417. [22] D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor-immune interaction, J. Math. Biol., 37 (1998), 235-252. doi: 10.1007/s002850050127. [23] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, $2^{nd}$ edition, Springer-Verlag, New York, 1998. [24] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295-321. [25] H. Li, C. Wang, J. Yu, S. Cao, F. Wei, W. Zhang, Y. Han and X. Ren, Dendritic cell-activated cytokine-induced killer cells enhance the anti-tumor effect of chemotherapy on non-small cell lung cancer in patients after surgery, Cytotherapy, 11 (2009), 1076-1083. [26] P. Lissoni, M. Chilelli, S. Villa, L. Cerizza and G. Tancini, Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial, J. Pineal Res., 35 (2003), 12-15. doi: 10.1034/j.1600-079X.2003.00032.x. [27] J. H. Machiels, R. T. Reilly, L. A. Emens, A. M. Ercolini, R. Y. Lei, D. Weintraub, F. I. Okoye and E. M. Jaffee, Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice, Cancer Res., 61 (2001), 3689-3697. [28] F. K. Nani and M. N. Oguztoreli, Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy, IMA J. Math. Med. Biol., 11 (1994), 107-147. doi: 10.1093/imammb/11.2.107. [29] A. K. Nowak, B. W. S. Robinson and R. A. Lake, Synergy between chemotherapy and immunotherapy in the treatment of established murine solid tumors, Cancer Res., 63 (2003), 4490-4496. [30] J. C. Panetta, A mathematical model of periodically pulsed chemotherapy: Tumor recurrence and metastasis in a competitive environment, Bull. Math. Biol., 58 (1996), 425-447. doi: 10.1007/BF02460591. [31] A. S. Perelson and G. Weisbuch, Immunology for physicists, Rev. Mod. Phys., 69 (1997), 1219-1268. doi: 10.1103/RevModPhys.69.1219. [32] B. A. Pockaj, R. M. Sherry, J. P. Wei, J. R. Yannelli, C. S. Carter, S. F. Leitman, J. A. Carasquillo, S. M. Steinberg, S. A. Rosenberg and J. C. Yang, Localization $of ^{111}$Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response, Cancer, 73 (1994), 1731-1737. [33] R. Ramakrishnan, D. Assudani, S. Nagaraj, T. Hunter, H. I. Cho, S. Antonia, S. Altiok, E. Celis and D. I. Gabrilovich, Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice, J. Clin Invest., 120 (2010), 1111-1124. doi: 10.1172/JCI40269. [34] S. A. Rosenberg, Development of effective immunotherapy for the treatment of patients with cancer, J. Am. Coll. Surg., 198 (2004), 685-696. doi: 10.1016/j.jamcollsurg.2004.01.025. [35] S. A. Rosenberg and M. E. Dudley, Adoptive cell therapy for the treatment of patients with metastatic melanoma, Curr. Opin. Immunol., 21 (2009), 233-240. doi: 10.1016/j.coi.2009.03.002. [36] S. Suki, H. Kantarjian, V. Gandhi, E. Estey, S. O'Brien, M. Beran, M. B. Rios, W. Plunkett and M. Keating, Fludarabine and cytosine arabinoside in the treatment of refractory or relapsed acute lymphocytic leukemia, Cancer, 72 (1993), 2155-2160. doi: 10.1002/1097-0142(19931001)72:7<2155::AID-CNCR2820720715>3.0.CO;2-V. [37] T. Trisilowati, S. McCue and D. Mallet, Numerical solution of an optimal control model of dendritic cell treatment of a growing tumour, ANZIAM J., 54 (2013), C664-C680. [38] H. C. Wei, A numerical study of a mathematical model of pulsed immunotherapy for superficial bladder cancer, Jpn. J. Ind. Appl. Math., 30 (2013), 441-452. doi: 10.1007/s13160-013-0107-3. [39] H. C. Wei, S. F. Hwang, J. T. Lin and T. J. Chen, The role of initial tumor biomass size in a mathematical model of periodically pulsed chemotherapy, Comput. Math. Appl., 61 (2011), 3117-3127. doi: 10.1016/j.camwa.2011.03.102. [40] H. C. Wei and J. T. Lin, Periodically pulsed immunotherapy in a mathematical model of tumor-immune interaction, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350068, 13 pp. doi: 10.1142/S0218127413500685.
 [1] Ana I. Muñoz, José Ignacio Tello. Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences & Engineering, 2011, 8 (4) : 1035-1059. doi: 10.3934/mbe.2011.8.1035 [2] Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 [3] Ben Sheller, Domenico D'Alessandro. Analysis of a cancer dormancy model and control of immuno-therapy. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1037-1053. doi: 10.3934/mbe.2015.12.1037 [4] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036 [5] Sergio Amat, Pablo Pedregal. On a variational approach for the analysis and numerical simulation of ODEs. Discrete and Continuous Dynamical Systems, 2013, 33 (4) : 1275-1291. doi: 10.3934/dcds.2013.33.1275 [6] Qiaolin He. Numerical simulation and self-similar analysis of singular solutions of Prandtl equations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 101-116. doi: 10.3934/dcdsb.2010.13.101 [7] Rolf Rannacher. A short course on numerical simulation of viscous flow: Discretization, optimization and stability analysis. Discrete and Continuous Dynamical Systems - S, 2012, 5 (6) : 1147-1194. doi: 10.3934/dcdss.2012.5.1147 [8] Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205 [9] Verónica Anaya, Mostafa Bendahmane, Mauricio Sepúlveda. Mathematical and numerical analysis for Predator-prey system in a polluted environment. Networks and Heterogeneous Media, 2010, 5 (4) : 813-847. doi: 10.3934/nhm.2010.5.813 [10] Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427 [11] Alexander S. Bratus, Svetlana Yu. Kovalenko, Elena Fimmel. On viable therapy strategy for a mathematical spatial cancer model describing the dynamics of malignant and healthy cells. Mathematical Biosciences & Engineering, 2015, 12 (1) : 163-183. doi: 10.3934/mbe.2015.12.163 [12] Baskar Sundaravadivoo. Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2561-2573. doi: 10.3934/dcdss.2020138 [13] José Ignacio Tello. Mathematical analysis of a model of morphogenesis. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 343-361. doi: 10.3934/dcds.2009.25.343 [14] Yuncherl Choi, Jongmin Han, Chun-Hsiung Hsia. Bifurcation analysis of the damped Kuramoto-Sivashinsky equation with respect to the period. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1933-1957. doi: 10.3934/dcdsb.2015.20.1933 [15] Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273 [16] George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003 [17] Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : i-iii. doi: 10.3934/dcdsb.2013.18.4i [18] Rodrigue Gnitchogna Batogna, Abdon Atangana. Generalised class of Time Fractional Black Scholes equation and numerical analysis. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 435-445. doi: 10.3934/dcdss.2019028 [19] Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511 [20] Victor Ginting. An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29 (5) : 3405-3427. doi: 10.3934/era.2021045

2020 Impact Factor: 1.327