Citation: |
[1] |
Z. Arat, A. Khanmamedov and S. Simsek, Global attractors for the plate equation with nonlocal nonlinearity in unbounded domains, Dynamics of PDE, 11 (2014), 361-379.doi: 10.4310/DPDE.2014.v11.n4.a4. |
[2] |
J. Ball, Global attractors for semilinear wave equations, Discr. Cont. Dyn. Sys., 10 (2004), 31-52.doi: 10.3934/dcds.2004.10.31. |
[3] |
F. Bucci and I. Chueshov, Long-time dynamics of a coupled system of nonlinear wave and thermoelastic plate equations, Discrete Contin. Dyn. Syst., 22 (2008), 557-586.doi: 10.3934/dcds.2008.22.557. |
[4] |
T. Cazenave and A. Haraux, An Introduction to Semilinear Evolution Equations, Oxford University Press, New York, 1998. |
[5] |
I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, Commun. Pure Appl. Anal., 11 (2012), 659-674.doi: 10.3934/cpaa.2012.11.659. |
[6] |
I. Chueshov and I. Lasiecka, Von Karman Evolution Equations, Springer, Berlin, 2010.doi: 10.1007/978-0-387-87712-9. |
[7] |
E. Dowell, Aeroelasticity of Plates and Shells, Nordhoff, Leyden, 1975. |
[8] |
E. Dowell, A Modern Course in Aeroelasticity, Springer, 2015.doi: 10.1007/978-3-319-09453-3. |
[9] |
A. Kh. Khanmamedov, Existence of a global attractor for the plate equation with a critical exponent in an unbounded domain, Applied Mathematics Letters, 18 (2005), 827-832.doi: 10.1016/j.aml.2004.08.013. |
[10] |
A. Kh. Khanmamedov, Global attractors for the plate equation with a localized damping and a critical exponent in an unbounded domain, J. Differential Equations, 225 (2006), 528-548.doi: 10.1016/j.jde.2005.12.001. |
[11] |
A. Kh. Khanmamedov, Global attractors for von Karman equations with nonlinear interior dissipation, J. Math. Anal. Appl., 318 (2006), 92-101.doi: 10.1016/j.jmaa.2005.05.031. |
[12] |
A. Kh. Khanmamedov, Global attractors for 2-D wave equations with displacement dependent damping, Math. Methods Appl. Sci., 33 (2010), 177-187.doi: 10.1002/mma.1161. |
[13] |
A. Kh. Khanmamedov, A global attractors for plate equation with displacement-dependent damping, Nonlinear Analysis, 74 (2011), 1607-1615.doi: 10.1016/j.na.2010.10.031. |
[14] |
S. Kolbasin, Attractors for Kirchoff's equation with a nonlinear damping coefficient, Nonlinear Analysis, 71 (2009), 2361-2371.doi: 10.1016/j.na.2009.01.187. |
[15] |
W. Krolikowski and O. Bang, {Solitons in nonlocal nonlnear media: Exact solutions, Physical Review E, 63 (2000), 016610. |
[16] |
T. F. Ma and V. Narciso, Global attractor for a model of extensible beam with nonlinear damping and source terms, Nonlinear Anal., 73 (2010), 3402-3412.doi: 10.1016/j.na.2010.07.023. |
[17] |
T. F. Ma, V. Narciso and M. L. Pelicer, Long-time behavior of a model of extensible beams with nonlinear boundary dissipations, J. Math. Anal. Appl., 396 (2012), 694-703.doi: 10.1016/j.jmaa.2012.07.004. |
[18] |
M. Potomkin, {On transmission problem for Berger plates on an elastic base, Journal of Mathematical Physics, Analysis, Geometry, 7 (2011), 96-102. |
[19] |
M. Potomkin, A nonlinear transmission problem for acompound plate with thermoelastic part, Math. Methods Appl. Sci., 35 (2012), 530-546.doi: 10.1002/mma.1589. |
[20] |
J. Simon, Compact sets in the space $L_p(0,T;B)$, Annali Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360. |
[21] |
A. Snyder and J. Mitchell, Accessible Solitons, Science, 276 (1997), 1538-1541.doi: 10.1126/science.276.5318.1538. |
[22] |
L. Yang, Uniform attractor for non-autonomous plate equation with a localized damping and a critical nonlinearity, J. Math. Anal. Appl., 338 (2008), 1243-1254.doi: 10.1016/j.jmaa.2007.06.011. |
[23] |
G. Yue and C. Zhong, Global attractors for plate equations with critical exponent in locally uniform spaces, Nonlinear Analysis, 71 (2009), 4105-4114.doi: 10.1016/j.na.2009.02.089. |