January  2016, 21(1): 185-203. doi: 10.3934/dcdsb.2016.21.185

The optimal mean variance problem with inflation

1. 

School of Insurance, Central University of Finance and Economics, Beijing 10086, China

2. 

Department of Applied Mathematics, The Hong Kong Polytechnic University, Hunghom, Kowloon, Hong Kong, China

3. 

Department of Systems Engineering and Engineering Management, City University of Hong Kong, Kowloon Tong, Hong Kong, China

Received  December 2013 Revised  September 2014 Published  November 2015

The risk of inflation is looming under the current low interest rate environment. Assuming that the investment includes a fixed interest asset and $n$ risky assets under inflation, we consider two scenarios: inflation rate can be observed directly or through a noisy observation. Since the inflation rate is random, all assets become risky. Under this circumstance, we formulate the portfolio selection problem and derive the efficient frontier by solving the associated HJB equation. We find that for a given expected portfolio return, investment at time $t$ is linearly proportional to the price index level. Moreover, the risk for the real value of the portfolio is no longer minimal when all the wealth is put into the fixed interest asset. Finally, for the mutual fund theorem, two funds are needed now instead of the traditional single fund. If an inflation linked bond can be included in the portfolio, the problem is reduced to the traditional mean variance problem with a risk-free and $n+1$ risky assets with real returns.
Citation: Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185
References:
[1]

A. Bensoussan, J. Keppo and S. P. Sethi, Optimal consumption and portfolio decisions with partially observed real prices,, Mathematical Finance, 19 (2009), 215.  doi: 10.1111/j.1467-9965.2009.00362.x.  Google Scholar

[2]

M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation,, Journal of Finance, 57 (2002), 1201.   Google Scholar

[3]

J. Cea, Lectures on Optimization - Theory and Algorithm,, Tata Institute of Fundamental Research, (1978).   Google Scholar

[4]

S. N. Chen and W. T. Moore, Uncertain inflation and optimal portfolio selection: A simplified approach,, The Financial Review, 20 (1985), 343.  doi: 10.1111/j.1540-6288.1985.tb00312.x.  Google Scholar

[5]

C. H. Chiu and X. Y. Zhou, The premium of dynamic trading,, Quantitative Finance, 11 (2011), 115.  doi: 10.1080/14697681003685589.  Google Scholar

[6]

W. S. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer-Verlag, (1993).   Google Scholar

[7]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation,, Mathematical Finance, 10 (2000), 387.  doi: 10.1111/1467-9965.00100.  Google Scholar

[8]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.   Google Scholar

[9]

X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints,, SIAM Journal on Control and Optimization, 40 (2002), 1540.  doi: 10.1137/S0363012900378504.  Google Scholar

[10]

J. Z. Liu, L. H. Bai and K. F. C. Yiu, Optimal investment with a value-at-risk constraint,, Journal of Industrial and Management Optimization, 8 (2012), 531.  doi: 10.3934/jimo.2012.8.531.  Google Scholar

[11]

J. Z. Liu and K. F. C. Yiu, Optimal stochastic differential games with VaR constraint,, Discrete & Continuous Dynamical Systems - Series B, 18 (2013), 1889.  doi: 10.3934/dcdsb.2013.18.1889.  Google Scholar

[12]

J. Z. Liu, K. F. C. Yiu and T. K. Siu, Optimal investment of an insurer with regime-switching and risk constraint,, Scandinavian Actuarial Journal, 2014 (2014), 583.  doi: 10.1080/03461238.2012.750621.  Google Scholar

[13]

S. Manaster, Real and nominal efficient sets,, Journal of Finance, 34 (1979), 93.  doi: 10.1111/j.1540-6261.1979.tb02073.x.  Google Scholar

[14]

C. Munk, C. Sorensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates and inflation uncertainty,, International Review of Economics and Finance, 13 (2004), 141.  doi: 10.1016/j.iref.2003.08.001.  Google Scholar

[15]

T. K. Siu, Long-term strategic asset allocation with inflation risk and regime switching,, Quantitative Finance, 11 (2011), 1565.  doi: 10.1080/14697680903055588.  Google Scholar

[16]

B. H. Solnik, Inflation and optimal portfolio choice,, Journal of Financial and Quantitative analysis, 13 (1978), 903.  doi: 10.2307/2330634.  Google Scholar

[17]

A. Zhang, Stochastic Optimization in Finance and Life Insurance: Applications of the Martingale Method,, Ph.D thesis, (2008).   Google Scholar

[18]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework,, Applied Mathematics and Optimization, 42 (2000), 19.  doi: 10.1007/s002450010003.  Google Scholar

[19]

K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint,, Automatica, 46 (2010), 979.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

show all references

References:
[1]

A. Bensoussan, J. Keppo and S. P. Sethi, Optimal consumption and portfolio decisions with partially observed real prices,, Mathematical Finance, 19 (2009), 215.  doi: 10.1111/j.1467-9965.2009.00362.x.  Google Scholar

[2]

M. J. Brennan and Y. Xia, Dynamic asset allocation under inflation,, Journal of Finance, 57 (2002), 1201.   Google Scholar

[3]

J. Cea, Lectures on Optimization - Theory and Algorithm,, Tata Institute of Fundamental Research, (1978).   Google Scholar

[4]

S. N. Chen and W. T. Moore, Uncertain inflation and optimal portfolio selection: A simplified approach,, The Financial Review, 20 (1985), 343.  doi: 10.1111/j.1540-6288.1985.tb00312.x.  Google Scholar

[5]

C. H. Chiu and X. Y. Zhou, The premium of dynamic trading,, Quantitative Finance, 11 (2011), 115.  doi: 10.1080/14697681003685589.  Google Scholar

[6]

W. S. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions,, Springer-Verlag, (1993).   Google Scholar

[7]

D. Li and W. L. Ng, Optimal dynamic portfolio selection: Multi-period mean-variance formulation,, Mathematical Finance, 10 (2000), 387.  doi: 10.1111/1467-9965.00100.  Google Scholar

[8]

H. Markowitz, Portfolio selection,, Journal of Finance, 7 (1952), 77.   Google Scholar

[9]

X. Li, X. Y. Zhou and A. E. B. Lim, Dynamic mean-variance portfolio selection with no-shorting constraints,, SIAM Journal on Control and Optimization, 40 (2002), 1540.  doi: 10.1137/S0363012900378504.  Google Scholar

[10]

J. Z. Liu, L. H. Bai and K. F. C. Yiu, Optimal investment with a value-at-risk constraint,, Journal of Industrial and Management Optimization, 8 (2012), 531.  doi: 10.3934/jimo.2012.8.531.  Google Scholar

[11]

J. Z. Liu and K. F. C. Yiu, Optimal stochastic differential games with VaR constraint,, Discrete & Continuous Dynamical Systems - Series B, 18 (2013), 1889.  doi: 10.3934/dcdsb.2013.18.1889.  Google Scholar

[12]

J. Z. Liu, K. F. C. Yiu and T. K. Siu, Optimal investment of an insurer with regime-switching and risk constraint,, Scandinavian Actuarial Journal, 2014 (2014), 583.  doi: 10.1080/03461238.2012.750621.  Google Scholar

[13]

S. Manaster, Real and nominal efficient sets,, Journal of Finance, 34 (1979), 93.  doi: 10.1111/j.1540-6261.1979.tb02073.x.  Google Scholar

[14]

C. Munk, C. Sorensen and T. N. Vinther, Dynamic asset allocation under mean-reverting returns, stochastic interest rates and inflation uncertainty,, International Review of Economics and Finance, 13 (2004), 141.  doi: 10.1016/j.iref.2003.08.001.  Google Scholar

[15]

T. K. Siu, Long-term strategic asset allocation with inflation risk and regime switching,, Quantitative Finance, 11 (2011), 1565.  doi: 10.1080/14697680903055588.  Google Scholar

[16]

B. H. Solnik, Inflation and optimal portfolio choice,, Journal of Financial and Quantitative analysis, 13 (1978), 903.  doi: 10.2307/2330634.  Google Scholar

[17]

A. Zhang, Stochastic Optimization in Finance and Life Insurance: Applications of the Martingale Method,, Ph.D thesis, (2008).   Google Scholar

[18]

X. Y. Zhou and D. Li, Continuous-time mean-variance portfolio selection: A stochastic LQ framework,, Applied Mathematics and Optimization, 42 (2000), 19.  doi: 10.1007/s002450010003.  Google Scholar

[19]

K. F. C. Yiu, J. Z. Liu, T. K. Siu and W. C. Ching, Optimal portfolios with regime-switching and value-at-risk constraint,, Automatica, 46 (2010), 979.  doi: 10.1016/j.automatica.2010.02.027.  Google Scholar

[1]

Haixiang Yao, Zhongfei Li, Yongzeng Lai. Dynamic mean-variance asset allocation with stochastic interest rate and inflation rate. Journal of Industrial & Management Optimization, 2016, 12 (1) : 187-209. doi: 10.3934/jimo.2016.12.187

[2]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018180

[3]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[4]

Jiongmin Yong. Time-inconsistent optimal control problems and the equilibrium HJB equation. Mathematical Control & Related Fields, 2012, 2 (3) : 271-329. doi: 10.3934/mcrf.2012.2.271

[5]

Yan Zeng, Zhongfei Li, Jingjun Liu. Optimal strategies of benchmark and mean-variance portfolio selection problems for insurers. Journal of Industrial & Management Optimization, 2010, 6 (3) : 483-496. doi: 10.3934/jimo.2010.6.483

[6]

Nan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Markowitz's mean-variance optimization with investment and constrained reinsurance. Journal of Industrial & Management Optimization, 2017, 13 (1) : 375-397. doi: 10.3934/jimo.2016022

[7]

Shuaiqi Zhang, Jie Xiong, Xin Zhang. Optimal investment problem with delay under partial information. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2020001

[8]

Maryam Ghoreishi, Abolfazl Mirzazadeh, Gerhard-Wilhelm Weber, Isa Nakhai-Kamalabadi. Joint pricing and replenishment decisions for non-instantaneous deteriorating items with partial backlogging, inflation- and selling price-dependent demand and customer returns. Journal of Industrial & Management Optimization, 2015, 11 (3) : 933-949. doi: 10.3934/jimo.2015.11.933

[9]

Haiyang Wang, Zhen Wu. Time-inconsistent optimal control problem with random coefficients and stochastic equilibrium HJB equation. Mathematical Control & Related Fields, 2015, 5 (3) : 651-678. doi: 10.3934/mcrf.2015.5.651

[10]

Baojun Bian, Shuntai Hu, Quan Yuan, Harry Zheng. Constrained viscosity solution to the HJB equation arising in perpetual American employee stock options pricing. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5413-5433. doi: 10.3934/dcds.2015.35.5413

[11]

Shuang Li, Chuong Luong, Francisca Angkola, Yonghong Wu. Optimal asset portfolio with stochastic volatility under the mean-variance utility with state-dependent risk aversion. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1521-1533. doi: 10.3934/jimo.2016.12.1521

[12]

Zhen Wang, Sanyang Liu. Multi-period mean-variance portfolio selection with fixed and proportional transaction costs. Journal of Industrial & Management Optimization, 2013, 9 (3) : 643-656. doi: 10.3934/jimo.2013.9.643

[13]

Zhiping Chen, Jia Liu, Gang Li. Time consistent policy of multi-period mean-variance problem in stochastic markets. Journal of Industrial & Management Optimization, 2016, 12 (1) : 229-249. doi: 10.3934/jimo.2016.12.229

[14]

Ping Chen, Haixiang Yao. Continuous-time mean-variance portfolio selection with no-shorting constraints and regime-switching. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2018166

[15]

Ning Zhang. A symmetric Gauss-Seidel based method for a class of multi-period mean-variance portfolio selection problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018189

[16]

Jiannan Zhang, Ping Chen, Zhuo Jin, Shuanming Li. Open-loop equilibrium strategy for mean-variance portfolio selection: A log-return model. Journal of Industrial & Management Optimization, 2017, 13 (5) : 0-0. doi: 10.3934/jimo.2019133

[17]

Xianping Wu, Xun Li, Zhongfei Li. A mean-field formulation for multi-period asset-liability mean-variance portfolio selection with probability constraints. Journal of Industrial & Management Optimization, 2018, 14 (1) : 249-265. doi: 10.3934/jimo.2017045

[18]

Yan Wang, Yanxiang Zhao, Lei Wang, Aimin Song, Yanping Ma. Stochastic maximum principle for partial information optimal investment and dividend problem of an insurer. Journal of Industrial & Management Optimization, 2018, 14 (2) : 653-671. doi: 10.3934/jimo.2017067

[19]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[20]

Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]