January  2016, 21(1): 245-252. doi: 10.3934/dcdsb.2016.21.245

Long-time behavior of solutions of the generalized Korteweg--de Vries equation

1. 

ALHOSN University, Mathematics and Natural Sciences Department, PO Box 38772, Abu Dhabi

Received  August 2014 Revised  August 2015 Published  November 2015

In this paper, we study the large-time behavior of solutions to the initial-value problem for the generalized Korteweg--de Vries equation. We show that for initial data in some weighted space, the asymptotic behavior of the solution can be improved. In addition, we give the asymptotic profile of the fundamental solution of the linearized model. We extend and improve the results in [3] and [2].
Citation: Belkacem Said-Houari. Long-time behavior of solutions of the generalized Korteweg--de Vries equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 245-252. doi: 10.3934/dcdsb.2016.21.245
References:
[1]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[2]

J. L. Bona, F. Demengel and K. Promislow, Fourier splitting and dissipation of nonlinear dispersive waves,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 477.  doi: 10.1017/S0308210500021478.  Google Scholar

[3]

J. L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive wave equations,, Differential Integral Equations, 6 (1993), 961.   Google Scholar

[4]

G. Bowtell and A. E. G Stuart, A particle representation for Korteweg-de Vries solitons,, J. Math. Phys., 24 (1983), 969.  doi: 10.1063/1.525786.  Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, A. Faminskii and F. Natal, Decay of solutions to damped Korteweg-de Vries type equation,, Appl. Math. Optim., 65 (2002), 221.  doi: 10.1007/s00245-011-9156-7.  Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, V. Komornik and J. H. Rodrigues, Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping,, Ann. I. H. Poincaré, 31 (2014), 1079.  doi: 10.1016/j.anihpc.2013.08.003.  Google Scholar

[7]

C. Guo and S. Fang, Optimal decay rates of solutions for a multidimensional generalized Benjamin-Bona-Mahony equation,, Nonlinear Anal., 75 (2012), 3385.  doi: 10.1016/j.na.2011.12.035.  Google Scholar

[8]

N. Hayashi and P. I. Naumkin, Asymptotics for the Korteweg-de Vries-Burgers equation,, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1441.  doi: 10.1007/s10114-005-0677-3.  Google Scholar

[9]

P. F. Hodnett and T. P. Moloney, On the structure during interaction of the two-soliton solution of the Korteweg-de Vries equation,, SIAM J. Appl. Math., 49 (1989), 1174.  doi: 10.1137/0149070.  Google Scholar

[10]

R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem,, Math. Meth. Appl. Sci., 27 (2004), 865.  doi: 10.1002/mma.476.  Google Scholar

[11]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation,, SIAM Rev., 14 (1972), 582.  doi: 10.1137/1014101.  Google Scholar

[12]

G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation,, Nonlinear Anal., 35 (1999), 199.   Google Scholar

[13]

C. J. Knickerbocker and A. C. Newell, Shelves and the Korteweg-de Vries equation,, Journal of Fluid Mechanics, 98 (1980), 803.  doi: 10.1017/S0022112080000407.  Google Scholar

[14]

P. D Lax, Integrals of nonlinear equations of evolution and solitary waves,, Commun. Pure Appl. Math., 21 (1968), 467.  doi: 10.1002/cpa.3160210503.  Google Scholar

[15]

F. Linares and A. F. Pazoto, Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane,, J. Differential Equations, 246 (2009), 1342.  doi: 10.1016/j.jde.2008.11.002.  Google Scholar

[16]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci. Kyoto. Univ, 12 (1976), 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[17]

P. I. Naumkin, On the asymptotic behavior for large time values of the solutions of nonlinear equations in the case of maximal order,, Diff. Equations, 29 (1993), 1071.   Google Scholar

[18]

P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves,, Volume 133 of Translations of Mathematical Monographs. American Mathematical Society, (1994).   Google Scholar

[19]

R. Racke, Lectures on Nonlinear Evolution Equations. Initial value Problems. Aspects of Mathematics, E19,, Friedrich Vieweg and Sohn: Braunschweig, (1992).  doi: 10.1007/978-3-663-10629-6.  Google Scholar

[20]

I. E. Segal, Dispersion for non-linear relativistic equations, II,, Ann. Sci. Ecole Norm. Sup., 1 (1968), 459.   Google Scholar

[21]

S. Vento, Asymptotic behavior for dissipative Korteweg-de Vrie equations,, Asymptotic Analysis, 68 (2010), 155.  doi: 10.3233/ASY-2010-0988.  Google Scholar

[22]

N. J Zabusky and M. D Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states,, Phys. Rev. Lett, 15 (1965), 240.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

show all references

References:
[1]

C. J. Amick, J. L. Bona and M. E. Schonbek, Decay of solutions of some nonlinear wave equations,, J. Differential Equations, 81 (1989), 1.  doi: 10.1016/0022-0396(89)90176-9.  Google Scholar

[2]

J. L. Bona, F. Demengel and K. Promislow, Fourier splitting and dissipation of nonlinear dispersive waves,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 477.  doi: 10.1017/S0308210500021478.  Google Scholar

[3]

J. L. Bona and L. Luo, Decay of solutions to nonlinear, dispersive wave equations,, Differential Integral Equations, 6 (1993), 961.   Google Scholar

[4]

G. Bowtell and A. E. G Stuart, A particle representation for Korteweg-de Vries solitons,, J. Math. Phys., 24 (1983), 969.  doi: 10.1063/1.525786.  Google Scholar

[5]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, A. Faminskii and F. Natal, Decay of solutions to damped Korteweg-de Vries type equation,, Appl. Math. Optim., 65 (2002), 221.  doi: 10.1007/s00245-011-9156-7.  Google Scholar

[6]

M. M. Cavalcanti, V. N. Domingos Cavalcanti, V. Komornik and J. H. Rodrigues, Global well-posedness and exponential decay rates for a KdV-Burgers equation with indefinite damping,, Ann. I. H. Poincaré, 31 (2014), 1079.  doi: 10.1016/j.anihpc.2013.08.003.  Google Scholar

[7]

C. Guo and S. Fang, Optimal decay rates of solutions for a multidimensional generalized Benjamin-Bona-Mahony equation,, Nonlinear Anal., 75 (2012), 3385.  doi: 10.1016/j.na.2011.12.035.  Google Scholar

[8]

N. Hayashi and P. I. Naumkin, Asymptotics for the Korteweg-de Vries-Burgers equation,, Acta Math. Sin. (Engl. Ser.), 22 (2006), 1441.  doi: 10.1007/s10114-005-0677-3.  Google Scholar

[9]

P. F. Hodnett and T. P. Moloney, On the structure during interaction of the two-soliton solution of the Korteweg-de Vries equation,, SIAM J. Appl. Math., 49 (1989), 1174.  doi: 10.1137/0149070.  Google Scholar

[10]

R. Ikehata, New decay estimates for linear damped wave equations and its application to nonlinear problem,, Math. Meth. Appl. Sci., 27 (2004), 865.  doi: 10.1002/mma.476.  Google Scholar

[11]

A. Jeffrey and T. Kakutani, Weak nonlinear dispersive waves: A discussion centered around the Korteweg-de Vries equation,, SIAM Rev., 14 (1972), 582.  doi: 10.1137/1014101.  Google Scholar

[12]

G. Karch, Self-similar large time behavior of solutions to Korteweg-de Vries-Burgers equation,, Nonlinear Anal., 35 (1999), 199.   Google Scholar

[13]

C. J. Knickerbocker and A. C. Newell, Shelves and the Korteweg-de Vries equation,, Journal of Fluid Mechanics, 98 (1980), 803.  doi: 10.1017/S0022112080000407.  Google Scholar

[14]

P. D Lax, Integrals of nonlinear equations of evolution and solitary waves,, Commun. Pure Appl. Math., 21 (1968), 467.  doi: 10.1002/cpa.3160210503.  Google Scholar

[15]

F. Linares and A. F. Pazoto, Asymptotic behavior of the Korteweg-de Vries equation posed in a quarter plane,, J. Differential Equations, 246 (2009), 1342.  doi: 10.1016/j.jde.2008.11.002.  Google Scholar

[16]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. Res. Inst. Math. Sci. Kyoto. Univ, 12 (1976), 169.  doi: 10.2977/prims/1195190962.  Google Scholar

[17]

P. I. Naumkin, On the asymptotic behavior for large time values of the solutions of nonlinear equations in the case of maximal order,, Diff. Equations, 29 (1993), 1071.   Google Scholar

[18]

P. I. Naumkin and I. A. Shishmarëv, Nonlinear Nonlocal Equations in the Theory of Waves,, Volume 133 of Translations of Mathematical Monographs. American Mathematical Society, (1994).   Google Scholar

[19]

R. Racke, Lectures on Nonlinear Evolution Equations. Initial value Problems. Aspects of Mathematics, E19,, Friedrich Vieweg and Sohn: Braunschweig, (1992).  doi: 10.1007/978-3-663-10629-6.  Google Scholar

[20]

I. E. Segal, Dispersion for non-linear relativistic equations, II,, Ann. Sci. Ecole Norm. Sup., 1 (1968), 459.   Google Scholar

[21]

S. Vento, Asymptotic behavior for dissipative Korteweg-de Vrie equations,, Asymptotic Analysis, 68 (2010), 155.  doi: 10.3233/ASY-2010-0988.  Google Scholar

[22]

N. J Zabusky and M. D Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states,, Phys. Rev. Lett, 15 (1965), 240.  doi: 10.1103/PhysRevLett.15.240.  Google Scholar

[1]

Mohammad A. Rammaha, Daniel Toundykov, Zahava Wilstein. Global existence and decay of energy for a nonlinear wave equation with $p$-Laplacian damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4361-4390. doi: 10.3934/dcds.2012.32.4361

[2]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[3]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations & Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[4]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[5]

Huafei Di, Yadong Shang, Jiali Yu. Existence and uniform decay estimates for the fourth order wave equation with nonlinear boundary damping and interior source. Electronic Research Archive, 2020, 28 (1) : 221-261. doi: 10.3934/era.2020015

[6]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic & Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[7]

Tae Gab Ha. Global existence and general decay estimates for the viscoelastic equation with acoustic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6899-6919. doi: 10.3934/dcds.2016100

[8]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations & Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[9]

Kotaro Tsugawa. Existence of the global attractor for weakly damped, forced KdV equation on Sobolev spaces of negative index. Communications on Pure & Applied Analysis, 2004, 3 (2) : 301-318. doi: 10.3934/cpaa.2004.3.301

[10]

Belkacem Said-Houari, Flávio A. Falcão Nascimento. Global existence and nonexistence for the viscoelastic wave equation with nonlinear boundary damping-source interaction. Communications on Pure & Applied Analysis, 2013, 12 (1) : 375-403. doi: 10.3934/cpaa.2013.12.375

[11]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure & Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[12]

Vanessa Barros, Carlos Nonato, Carlos Raposo. Global existence and energy decay of solutions for a wave equation with non-constant delay and nonlinear weights. Electronic Research Archive, 2020, 28 (1) : 205-220. doi: 10.3934/era.2020014

[13]

Lvqiao Liu, Hao Wang. Global existence and decay of solutions for hard potentials to the fokker-planck-boltzmann equation without cut-off. Communications on Pure & Applied Analysis, 2020, 19 (6) : 3113-3136. doi: 10.3934/cpaa.2020135

[14]

Yongming Liu, Lei Yao. Global solution and decay rate for a reduced gravity two and a half layer model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2613-2638. doi: 10.3934/dcdsb.2018267

[15]

Kim Dang Phung. Decay of solutions of the wave equation with localized nonlinear damping and trapped rays. Mathematical Control & Related Fields, 2011, 1 (2) : 251-265. doi: 10.3934/mcrf.2011.1.251

[16]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[17]

Jean-Paul Chehab, Georges Sadaka. On damping rates of dissipative KdV equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1487-1506. doi: 10.3934/dcdss.2013.6.1487

[18]

Jun Zhou. Global existence and energy decay estimate of solutions for a class of nonlinear higher-order wave equation with general nonlinear dissipation and source term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1175-1185. doi: 10.3934/dcdss.2017064

[19]

Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 307-318. doi: 10.3934/dcds.2008.21.307

[20]

Ruiying Wei, Yin Li, Zheng-an Yao. Global existence and convergence rates of solutions for the compressible Euler equations with damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020047

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]