January  2016, 21(1): 253-269. doi: 10.3934/dcdsb.2016.21.253

Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application

1. 

Department of Mathematics, Harbin Institute of Technology at Weihai, Weihai 264209, China, China, China

Received  January 2015 Revised  July 2015 Published  November 2015

In this paper, we investigate the global stability of discrete-time coupled systems with multi-diffusion (DCSMDs). By utilizing a multi-digraph theory, we construct a global Lyapunov function for DCSMDs. Consequently, some sufficient conditions are presented to ensure the stability of a general DCSMDs. Then the proposed theory is successfully applied to analyze the global stability for a discrete-time predator-prey model which is discretized by a nonstandard finite difference scheme. Finally, an example with numerical simulation is given to demonstrate the effectiveness of the obtained results.
Citation: Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253
References:
[1]

J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate,, J. Biol. Syst., 20 (2012), 235.  doi: 10.1142/S021833901250009X.  Google Scholar

[2]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[3]

C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation,, Automatica, 48 (2012), 121.  doi: 10.1016/j.automatica.2011.09.044.  Google Scholar

[4]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391.  doi: 10.1016/j.amc.2011.10.015.  Google Scholar

[5]

R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 280.  doi: 10.1016/j.amc.2011.05.056.  Google Scholar

[6]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38.  doi: 10.1016/j.jmaa.2009.09.017.  Google Scholar

[7]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes,, Nonlinear Anal. RWA, 14 (2013), 1693.  doi: 10.1016/j.nonrwa.2012.11.005.  Google Scholar

[8]

J. Epperlein, S. Siegmund and P. Stehík, Evolutionary games on graphs and discrete dynamical systems,, J. Difference Eq. Appl., 21 (2015), 72.  doi: 10.1080/10236198.2014.988618.  Google Scholar

[9]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Differ. Equ., 248 (2010), 1.  doi: 10.1016/j.jde.2009.09.003.  Google Scholar

[10]

S. Elaydi, An Introduction to Difference Equations,, 3rd ed, (2004).   Google Scholar

[11]

G. Barlev, M. Girvan and E. Ott, Map model for synchronization of systems of many coupled oscillators,, Chaos, 20 (2010).  doi: 10.1063/1.3357983.  Google Scholar

[12]

M. Lazar, W. P. M. H. Heemels and A. R. Teel, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems,, IEEE Trans. Autom. Control., 54 (2009), 2421.  doi: 10.1109/TAC.2009.2029297.  Google Scholar

[13]

J. Q. Qiu, K. F. Lu, P. Shi and M. S. Mahmoud, Robust exponential stability for discrete-time interval BAM neural networks with delays and Markovian jump parameters,, Int. J. Adapt. Control., 24 (2010), 760.  doi: 10.1002/acs.1171.  Google Scholar

[14]

M. S. Peng and X. Z. Yang, New stability criteria and bifurcation analysis for nonlinear discrete-time coupled loops with multiple delays,, Chaos, 20 (2010).  doi: 10.1063/1.3339857.  Google Scholar

[15]

S. V. Naghavi and A. A. Safavi, Novel synchronization of discrete-time chaotic systems using neural network observer,, Chaos, 18 (2008).  doi: 10.1063/1.2959140.  Google Scholar

[16]

J. D. Cao and J. Q. Lu, Adaptive synchronization of neural networks with or without time-varying delay,, Chaos, 16 (2006).  doi: 10.1063/1.2178448.  Google Scholar

[17]

H. Su, W. Li and K. Wang, Global stability of discrete-time coupled systems on networks and its applications,, Chaos, 22 (2012).  doi: 10.1063/1.4748851.  Google Scholar

[18]

C. Zhang, W. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks,, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 1698.  doi: 10.1109/TNNLS.2014.2352217.  Google Scholar

[19]

F. M. Atay and $\ddot Q$. Karabacak, Stability of coupled map networks with delays,, SIAM J. Appl. Dyn. Syst., 5 (2006), 508.  doi: 10.1137/060652531.  Google Scholar

[20]

H. Guo, M. L. Li and Z.Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793.  doi: 10.1090/S0002-9939-08-09341-6.  Google Scholar

[21]

C. Zhang, W. Li and K. Wang, Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling,, Appl. Math. Model., 37 (2013), 5394.  doi: 10.1016/j.apm.2012.10.032.  Google Scholar

[22]

C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling,, Math. Meth. Appl. Sci., 37 (2014), 1179.  doi: 10.1002/mma.2879.  Google Scholar

[23]

W. Li, H. Su, D. Wei and K. Wang, Global stability of coupled nonlinear systems with Markovian switching,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2609.  doi: 10.1016/j.cnsns.2011.09.039.  Google Scholar

[24]

C. Zhang, W. Li and K. Wang, Graph-theoretic approach to stability of multi-group models with dispersal,, Discrete. Cont. Dyn-B., 20 (2015), 259.  doi: 10.3934/dcdsb.2015.20.259.  Google Scholar

[25]

D. B. West, Introduction to Graph Theory, Prentice Hall,, Upper Saddle River, (1996).   Google Scholar

[26]

R. E. Mickens, Nonstandard finite difference schemes for differential equations,, J. Differ. Equ. Appl., 8 (2002), 823.  doi: 10.1080/1023619021000000807.  Google Scholar

[27]

S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model,, Physica D., 188 (2004), 134.  doi: 10.1016/S0167-2789(03)00285-9.  Google Scholar

show all references

References:
[1]

J. Wang, J. Zu, X. Liu, G. Huang and J. Zhang, Global dynamics of a multi-group epidemic model with general relapse distribution and nonlinear incidence rate,, J. Biol. Syst., 20 (2012), 235.  doi: 10.1142/S021833901250009X.  Google Scholar

[2]

H. Shu, D. Fan and J. Wei, Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission,, Nonlinear Anal. RWA, 13 (2012), 1581.  doi: 10.1016/j.nonrwa.2011.11.016.  Google Scholar

[3]

C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation,, Automatica, 48 (2012), 121.  doi: 10.1016/j.automatica.2011.09.044.  Google Scholar

[4]

H. Chen and J. Sun, Global stability of delay multigroup epidemic models with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 4391.  doi: 10.1016/j.amc.2011.10.015.  Google Scholar

[5]

R. Sun and J. Shi, Global stability of multigroup epidemic model with group mixing and nonlinear incidence rates,, Appl. Math. Comput., 218 (2011), 280.  doi: 10.1016/j.amc.2011.05.056.  Google Scholar

[6]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multi-group epidemic models with distributed delays,, J. Math. Anal. Appl., 361 (2010), 38.  doi: 10.1016/j.jmaa.2009.09.017.  Google Scholar

[7]

Y. Muroya, Y. Enatsu and T. Kuniya, Global stability for a multi-group SIRS epidemic model with varying population sizes,, Nonlinear Anal. RWA, 14 (2013), 1693.  doi: 10.1016/j.nonrwa.2012.11.005.  Google Scholar

[8]

J. Epperlein, S. Siegmund and P. Stehík, Evolutionary games on graphs and discrete dynamical systems,, J. Difference Eq. Appl., 21 (2015), 72.  doi: 10.1080/10236198.2014.988618.  Google Scholar

[9]

M. Y. Li and Z. Shuai, Global-stability problem for coupled systems of differential equations on networks,, J. Differ. Equ., 248 (2010), 1.  doi: 10.1016/j.jde.2009.09.003.  Google Scholar

[10]

S. Elaydi, An Introduction to Difference Equations,, 3rd ed, (2004).   Google Scholar

[11]

G. Barlev, M. Girvan and E. Ott, Map model for synchronization of systems of many coupled oscillators,, Chaos, 20 (2010).  doi: 10.1063/1.3357983.  Google Scholar

[12]

M. Lazar, W. P. M. H. Heemels and A. R. Teel, Lyapunov functions, stability and input-to-state stability subtleties for discrete-time discontinuous systems,, IEEE Trans. Autom. Control., 54 (2009), 2421.  doi: 10.1109/TAC.2009.2029297.  Google Scholar

[13]

J. Q. Qiu, K. F. Lu, P. Shi and M. S. Mahmoud, Robust exponential stability for discrete-time interval BAM neural networks with delays and Markovian jump parameters,, Int. J. Adapt. Control., 24 (2010), 760.  doi: 10.1002/acs.1171.  Google Scholar

[14]

M. S. Peng and X. Z. Yang, New stability criteria and bifurcation analysis for nonlinear discrete-time coupled loops with multiple delays,, Chaos, 20 (2010).  doi: 10.1063/1.3339857.  Google Scholar

[15]

S. V. Naghavi and A. A. Safavi, Novel synchronization of discrete-time chaotic systems using neural network observer,, Chaos, 18 (2008).  doi: 10.1063/1.2959140.  Google Scholar

[16]

J. D. Cao and J. Q. Lu, Adaptive synchronization of neural networks with or without time-varying delay,, Chaos, 16 (2006).  doi: 10.1063/1.2178448.  Google Scholar

[17]

H. Su, W. Li and K. Wang, Global stability of discrete-time coupled systems on networks and its applications,, Chaos, 22 (2012).  doi: 10.1063/1.4748851.  Google Scholar

[18]

C. Zhang, W. Li and K. Wang, Graph theory-based approach for stability analysis of stochastic coupled systems with Lévy noise on networks,, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 1698.  doi: 10.1109/TNNLS.2014.2352217.  Google Scholar

[19]

F. M. Atay and $\ddot Q$. Karabacak, Stability of coupled map networks with delays,, SIAM J. Appl. Dyn. Syst., 5 (2006), 508.  doi: 10.1137/060652531.  Google Scholar

[20]

H. Guo, M. L. Li and Z.Shuai, A graph-theoretic approach to the method of global Lyapunov functions,, Proc. Amer. Math. Soc., 136 (2008), 2793.  doi: 10.1090/S0002-9939-08-09341-6.  Google Scholar

[21]

C. Zhang, W. Li and K. Wang, Boundedness for network of stochastic coupled van der Pol oscillators with time-varying delayed coupling,, Appl. Math. Model., 37 (2013), 5394.  doi: 10.1016/j.apm.2012.10.032.  Google Scholar

[22]

C. Zhang, W. Li and K. Wang, A graph-theoretic approach to stability of neutral stochastic coupled oscillators network with time-varying delayed coupling,, Math. Meth. Appl. Sci., 37 (2014), 1179.  doi: 10.1002/mma.2879.  Google Scholar

[23]

W. Li, H. Su, D. Wei and K. Wang, Global stability of coupled nonlinear systems with Markovian switching,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2609.  doi: 10.1016/j.cnsns.2011.09.039.  Google Scholar

[24]

C. Zhang, W. Li and K. Wang, Graph-theoretic approach to stability of multi-group models with dispersal,, Discrete. Cont. Dyn-B., 20 (2015), 259.  doi: 10.3934/dcdsb.2015.20.259.  Google Scholar

[25]

D. B. West, Introduction to Graph Theory, Prentice Hall,, Upper Saddle River, (1996).   Google Scholar

[26]

R. E. Mickens, Nonstandard finite difference schemes for differential equations,, J. Differ. Equ. Appl., 8 (2002), 823.  doi: 10.1080/1023619021000000807.  Google Scholar

[27]

S. M. Moghadas, M. E. Alexander and B. D. Corbett, A non-standard numerical scheme for a generalized Gause-type predator-prey model,, Physica D., 188 (2004), 134.  doi: 10.1016/S0167-2789(03)00285-9.  Google Scholar

[1]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[2]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[5]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[6]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[7]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[8]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[9]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[10]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[11]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[12]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[13]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[14]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[15]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[16]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[17]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[18]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]