• Previous Article
    An almost periodic epidemic model with age structure in a patchy environment
  • DCDS-B Home
  • This Issue
  • Next Article
    Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application
January  2016, 21(1): 271-289. doi: 10.3934/dcdsb.2016.21.271

An almost periodic epidemic model in a patchy environment

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China, China

2. 

School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000

Received  August 2014 Revised  June 2015 Published  November 2015

The persistence and extinction of an almost periodic epidemic model in a patchy environment are studied. It is shown that the disease cannot invade the disease-free state if the exponential growth bound is less than zero and can invade if it is greater than zero. It is also shown that there exists an almost periodic solution which is globally attractive when each patch admits the same dispersal rate. Finally, numerical simulations illustrate the above results.
Citation: Bin-Guo Wang, Wan-Tong Li, Lizhong Qiang. An almost periodic epidemic model in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 271-289. doi: 10.3934/dcdsb.2016.21.271
References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases,, Ecology Letters, 9 (2006), 467.  doi: 10.1111/j.1461-0248.2005.00879.x.  Google Scholar

[2]

J. Arino, Diseases in metapopulations. Modeling and dynamics of infectious diseases, 64-122,, Ser. Contemp. Appl. Math. CAM, (2009).   Google Scholar

[3]

G. Butler and P. Waltman, Persistence in dynamical systems,, J. Differential Equations, 63 (1986), 255.  doi: 10.1016/0022-0396(86)90049-5.  Google Scholar

[4]

F. Cordova-Lepe, G. Robledo, M. Pinto and E. Gonzalez-Olivares, Modeling pulse infectious events irrupting into a controlled context: a SIS disease with almost periodic parameters,, Appl. Math. Model., 36 (2012), 1323.  doi: 10.1016/j.apm.2011.07.085.  Google Scholar

[5]

C. Corduneanu, Almost Periodic Functions,, Chelsea Publishing Company New York, (1989).   Google Scholar

[6]

S. R. Dunbar, K. P. Rybakowski and K. Schmitt, Persistence in models of predator-prey populations with diffusion,, J. Differential Equations, 65 (1986), 117.  doi: 10.1016/0022-0396(86)90044-6.  Google Scholar

[7]

A. M. Fink, Almost Periodic Differential Equations,, Lecture Notes in Mathematics, (1974).   Google Scholar

[8]

D. Gao and S. Ruan, Malaria models with spatial effects, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Disease,, D. Chen, (2014), 111.   Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs 25, (1988).   Google Scholar

[10]

H. W. Hethcote, Qualitative analysis of communicable disease models,, Math. Biosci., 28 (1976), 335.  doi: 10.1016/0025-5564(76)90132-2.  Google Scholar

[11]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems,, J. Dyn. Diff. Equ., 13 (2001), 107.  doi: 10.1023/A:1009044515567.  Google Scholar

[12]

X. Liu and P. Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections,, Nonlinear Anal. Real Word Appl., 14 (2013), 264.  doi: 10.1016/j.nonrwa.2012.06.003.  Google Scholar

[13]

Y. Nakata, On the global stability of a delayed epidemic model with transport-related infection,, Nonlinear Anal. Real Word Appl., 12 (2011), 3028.  doi: 10.1016/j.nonrwa.2011.05.004.  Google Scholar

[14]

G. Sell, Topological Dynamics and Ordinary Differential Equations,, Van Nostrand Reinhold, (1971).   Google Scholar

[15]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Memoirs of Amer. Math. Soc., (1998).  doi: 10.1090/memo/0647.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems,, Math. Surveys and Monographs, (1995).   Google Scholar

[17]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[18]

B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models,, J. Dyn. Diff. Equ., 25 (2013), 535.  doi: 10.1007/s10884-013-9304-7.  Google Scholar

[19]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[20]

W. Wang, Epidemic models with population dispersal,, Mathematics for Life Sciences and Medicine, (2007), 67.   Google Scholar

[21]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[22]

X.-Q. Zhao, Global attractivity and stability in some monotone discrete dynamical systems,, Bull. Austral. Math. Soc., 53 (1996), 305.  doi: 10.1017/S0004972700017032.  Google Scholar

[23]

X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems,, J. Differential Equations, 187 (2003), 494.  doi: 10.1016/S0022-0396(02)00054-2.  Google Scholar

[24]

X.-Q. Zhao, Persistence in almost periodic predator-prey reaction-diffusion systems,, Fields Institute Communications, 36 (2003), 259.   Google Scholar

[25]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[26]

X.-Q. Zhao and Z. J. Jing, Global asymptotic behavior of some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

show all references

References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases,, Ecology Letters, 9 (2006), 467.  doi: 10.1111/j.1461-0248.2005.00879.x.  Google Scholar

[2]

J. Arino, Diseases in metapopulations. Modeling and dynamics of infectious diseases, 64-122,, Ser. Contemp. Appl. Math. CAM, (2009).   Google Scholar

[3]

G. Butler and P. Waltman, Persistence in dynamical systems,, J. Differential Equations, 63 (1986), 255.  doi: 10.1016/0022-0396(86)90049-5.  Google Scholar

[4]

F. Cordova-Lepe, G. Robledo, M. Pinto and E. Gonzalez-Olivares, Modeling pulse infectious events irrupting into a controlled context: a SIS disease with almost periodic parameters,, Appl. Math. Model., 36 (2012), 1323.  doi: 10.1016/j.apm.2011.07.085.  Google Scholar

[5]

C. Corduneanu, Almost Periodic Functions,, Chelsea Publishing Company New York, (1989).   Google Scholar

[6]

S. R. Dunbar, K. P. Rybakowski and K. Schmitt, Persistence in models of predator-prey populations with diffusion,, J. Differential Equations, 65 (1986), 117.  doi: 10.1016/0022-0396(86)90044-6.  Google Scholar

[7]

A. M. Fink, Almost Periodic Differential Equations,, Lecture Notes in Mathematics, (1974).   Google Scholar

[8]

D. Gao and S. Ruan, Malaria models with spatial effects, Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Disease,, D. Chen, (2014), 111.   Google Scholar

[9]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Math. Surveys and Monographs 25, (1988).   Google Scholar

[10]

H. W. Hethcote, Qualitative analysis of communicable disease models,, Math. Biosci., 28 (1976), 335.  doi: 10.1016/0025-5564(76)90132-2.  Google Scholar

[11]

M. W. Hirsch, H. L. Smith and X.-Q. Zhao, Chain transitivity, attractivity and strong repellors for semidynamical systems,, J. Dyn. Diff. Equ., 13 (2001), 107.  doi: 10.1023/A:1009044515567.  Google Scholar

[12]

X. Liu and P. Stechlinski, Transmission dynamics of a switched multi-city model with transport-related infections,, Nonlinear Anal. Real Word Appl., 14 (2013), 264.  doi: 10.1016/j.nonrwa.2012.06.003.  Google Scholar

[13]

Y. Nakata, On the global stability of a delayed epidemic model with transport-related infection,, Nonlinear Anal. Real Word Appl., 12 (2011), 3028.  doi: 10.1016/j.nonrwa.2011.05.004.  Google Scholar

[14]

G. Sell, Topological Dynamics and Ordinary Differential Equations,, Van Nostrand Reinhold, (1971).   Google Scholar

[15]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows,, Memoirs of Amer. Math. Soc., (1998).  doi: 10.1090/memo/0647.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative systems,, Math. Surveys and Monographs, (1995).   Google Scholar

[17]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Cambridge University Press, (1995).  doi: 10.1017/CBO9780511530043.  Google Scholar

[18]

B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models,, J. Dyn. Diff. Equ., 25 (2013), 535.  doi: 10.1007/s10884-013-9304-7.  Google Scholar

[19]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment,, Math. Biosci., 190 (2004), 97.  doi: 10.1016/j.mbs.2002.11.001.  Google Scholar

[20]

W. Wang, Epidemic models with population dispersal,, Mathematics for Life Sciences and Medicine, (2007), 67.   Google Scholar

[21]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment,, J. Math. Anal. Appl., 325 (2007), 496.  doi: 10.1016/j.jmaa.2006.01.085.  Google Scholar

[22]

X.-Q. Zhao, Global attractivity and stability in some monotone discrete dynamical systems,, Bull. Austral. Math. Soc., 53 (1996), 305.  doi: 10.1017/S0004972700017032.  Google Scholar

[23]

X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems,, J. Differential Equations, 187 (2003), 494.  doi: 10.1016/S0022-0396(02)00054-2.  Google Scholar

[24]

X.-Q. Zhao, Persistence in almost periodic predator-prey reaction-diffusion systems,, Fields Institute Communications, 36 (2003), 259.   Google Scholar

[25]

X.-Q. Zhao, Dynamical Systems in Population Biology,, Springer-Verlag, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[26]

X.-Q. Zhao and Z. J. Jing, Global asymptotic behavior of some cooperative systems of functional differential equations,, Canad. Appl. Math. Quart., 4 (1996), 421.   Google Scholar

[1]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[2]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete & Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[3]

P.E. Kloeden, Victor S. Kozyakin. The perturbation of attractors of skew-product flows with a shadowing driving system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 883-893. doi: 10.3934/dcds.2001.7.883

[4]

Saša Kocić. Reducibility of skew-product systems with multidimensional Brjuno base flows. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 261-283. doi: 10.3934/dcds.2011.29.261

[5]

Tomás Caraballo, Alexandre N. Carvalho, Henrique B. da Costa, José A. Langa. Equi-attraction and continuity of attractors for skew-product semiflows. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2949-2967. doi: 10.3934/dcdsb.2016081

[6]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[7]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[8]

Adel Settati, Aadil Lahrouz, Mustapha El Jarroudi, Mohamed El Fatini, Kai Wang. On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020012

[9]

Juan A. Calzada, Rafael Obaya, Ana M. Sanz. Continuous separation for monotone skew-product semiflows: From theoretical to numerical results. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 915-944. doi: 10.3934/dcdsb.2015.20.915

[10]

Sylvia Novo, Carmen Núñez, Rafael Obaya, Ana M. Sanz. Skew-product semiflows for non-autonomous partial functional differential equations with delay. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4291-4321. doi: 10.3934/dcds.2014.34.4291

[11]

Bogdan Sasu, A. L. Sasu. Input-output conditions for the asymptotic behavior of linear skew-product flows and applications. Communications on Pure & Applied Analysis, 2006, 5 (3) : 551-569. doi: 10.3934/cpaa.2006.5.551

[12]

Bin-Guo Wang, Wan-Tong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 291-311. doi: 10.3934/dcdsb.2016.21.291

[13]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms II. Electronic Research Announcements, 2001, 7: 28-36.

[14]

Vadim Yu. Kaloshin and Brian R. Hunt. A stretched exponential bound on the rate of growth of the number of periodic points for prevalent diffeomorphisms I. Electronic Research Announcements, 2001, 7: 17-27.

[15]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[16]

Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064

[17]

Jinhuo Luo, Jin Wang, Hao Wang. Seasonal forcing and exponential threshold incidence in cholera dynamics. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2261-2290. doi: 10.3934/dcdsb.2017095

[18]

Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111

[19]

Yanan Zhao, Daqing Jiang, Xuerong Mao, Alison Gray. The threshold of a stochastic SIRS epidemic model in a population with varying size. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1277-1295. doi: 10.3934/dcdsb.2015.20.1277

[20]

Zhenguo Bai, Yicang Zhou. Threshold dynamics of a bacillary dysentery model with seasonal fluctuation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 1-14. doi: 10.3934/dcdsb.2011.15.1

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]