January  2016, 21(1): 291-311. doi: 10.3934/dcdsb.2016.21.291

An almost periodic epidemic model with age structure in a patchy environment

1. 

School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, China

2. 

School of Mathematics and Statistics, Key Laboratory of Applied Mathematics and Complex Systems, Lanzhou University, Lanzhou, Gansu 730000

Received  October 2014 Revised  August 2015 Published  November 2015

An almost periodic epidemic model with age structure in a patchy environment is considered. The existence of the almost periodic disease-free solution and the definition of the basic reproduction ratio $R_{0}$ are given. Based on those, it is shown that a disease dies out if the basic reproduction number $R_{0}$ is less than unity and persists in the population if it is greater than unity.
Citation: Bin-Guo Wang, Wan-Tong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 291-311. doi: 10.3934/dcdsb.2016.21.291
References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecology Letters, 9 (2006), 467-484. doi: 10.1111/j.1461-0248.2005.00879.x.

[2]

G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122. doi: 10.1016/0025-5564(78)90021-4.

[3]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[4]

R. M. Bolker and B. T. Grenfell, Space, persistence, and dynamics of measles epidemics, Phil. Trans. Roy. Soc. Lond. Ser. B., 348 (1995), 309-320. doi: 10.1098/rstb.1995.0070.

[5]

C. Castillo-Chavez and Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998), 135-154. doi: 10.1016/S0025-5564(98)10016-0.

[6]

C. Corduneanu, Almost Periodic Functions, Chelsea Publishing Company New York, N.Y., 1989.

[7]

R. Cressman and V. K$\hatr$ivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, J. Math. Biol., 67 (2013), 329-358. doi: 10.1007/s00285-012-0548-3.

[8]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[9]

P. E. M. Fine and J. Clarkson, Measles in England and Wales 1: An analysis of factors underlying seasonal patterns, Int. J. Epidemiol., 11 (1982), 5-14. doi: 10.1093/ije/11.1.5.

[10]

A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1974.

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, in: Applied Mathematical Sciences, Vol. 99, Springer, Berlin, Heidelberg, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

H. W. Hethcote, Qualitative analysis of communicable disease models, Math. Biosci., 28 (1976), 335-356. doi: 10.1016/0025-5564(76)90132-2.

[13]

Y. Hino, S. Murakami and T. Naiko, Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, Heidelberg, 1991.

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[15]

X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment, SIAM J. Appl. Math., 71 (2011), 1896-1917. doi: 10.1137/100813610.

[16]

A. McKendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130. doi: 10.1017/S0013091500034428.

[17]

S. Novo and R. Obaya, Strictly ordered mininal subsets of a class of convex monotone skew-product semiflows, J. Differential Equations, 196 (2004), 249-288. doi: 10.1016/S0022-0396(03)00152-9.

[18]

S. Novo, R. Obaya and A. M. Sanz, Attractor minimal sets for cooperative and strongly convex delay differential system, J. Differential Equations, 208 (2005), 86-123. doi: 10.1016/j.jde.2004.01.002.

[19]

C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows I: The general case, J. Differential Equations, 248 (2010), 1899-1925. doi: 10.1016/j.jde.2009.12.007.

[20]

R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, in Memoirs of the American Mathematical Society, 11 (1977), iv+67 pp. doi: 10.1090/memo/0190.

[21]

G. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971.

[22]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Memoirs of Amer. Math. Soc., 136 (1998), x+93 pp. doi: 10.1090/memo/0647.

[23]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1995.

[24]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.

[25]

J. W.-H. So, J. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biol., 43 (2001), 37-51. doi: 10.1007/s002850100081.

[26]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[27]

B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equ., 25 (2013), 535-562. doi: 10.1007/s10884-013-9304-7.

[28]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112. doi: 10.1016/j.mbs.2002.11.001.

[29]

W. Wang and X.-Q. Zhao, An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65 (2005), 1597-1614. doi: 10.1137/S0036139903431245.

[30]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[31]

D. Watts, D. Burke, B. Harrison, R. Whitmire and A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Med. Hyg., 36 (1987), 143-152.

[32]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.

[33]

X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems, J. Differential Equations, 187 (2003), 494-509. doi: 10.1016/S0022-0396(02)00054-2.

[34]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.

show all references

References:
[1]

S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual and P. Rohani, Seasonality and the dynamics of infectious diseases, Ecology Letters, 9 (2006), 467-484. doi: 10.1111/j.1461-0248.2005.00879.x.

[2]

G. Aronsson and R. B. Kellogg, On a differential equation arising from compartmental analysis, Math. Biosci., 38 (1978), 113-122. doi: 10.1016/0025-5564(78)90021-4.

[3]

N. Bacaër and S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421-436. doi: 10.1007/s00285-006-0015-0.

[4]

R. M. Bolker and B. T. Grenfell, Space, persistence, and dynamics of measles epidemics, Phil. Trans. Roy. Soc. Lond. Ser. B., 348 (1995), 309-320. doi: 10.1098/rstb.1995.0070.

[5]

C. Castillo-Chavez and Z. Feng, Global stability of an age-structure model for TB and its applications to optimal vaccination strategies, Math. Biosci., 151 (1998), 135-154. doi: 10.1016/S0025-5564(98)10016-0.

[6]

C. Corduneanu, Almost Periodic Functions, Chelsea Publishing Company New York, N.Y., 1989.

[7]

R. Cressman and V. K$\hatr$ivan, Two-patch population models with adaptive dispersal: The effects of varying dispersal speeds, J. Math. Biol., 67 (2013), 329-358. doi: 10.1007/s00285-012-0548-3.

[8]

O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio $R_{0}$ in the models for infectious disease in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382. doi: 10.1007/BF00178324.

[9]

P. E. M. Fine and J. Clarkson, Measles in England and Wales 1: An analysis of factors underlying seasonal patterns, Int. J. Epidemiol., 11 (1982), 5-14. doi: 10.1093/ije/11.1.5.

[10]

A. M. Fink, Almost Periodic Differential Equations, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1974.

[11]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, in: Applied Mathematical Sciences, Vol. 99, Springer, Berlin, Heidelberg, New York, 1993. doi: 10.1007/978-1-4612-4342-7.

[12]

H. W. Hethcote, Qualitative analysis of communicable disease models, Math. Biosci., 28 (1976), 335-356. doi: 10.1016/0025-5564(76)90132-2.

[13]

Y. Hino, S. Murakami and T. Naiko, Functional Differential Equations with Infinite Delay, in: Lecture Notes in Mathematics, Vol. 1473, Springer, Berlin, Heidelberg, 1991.

[14]

P. Magal and X.-Q. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37 (2005), 251-275. doi: 10.1137/S0036141003439173.

[15]

X. Liu and X.-Q. Zhao, A periodic epidemic model with age structure in a patchy environment, SIAM J. Appl. Math., 71 (2011), 1896-1917. doi: 10.1137/100813610.

[16]

A. McKendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44 (1925), 98-130. doi: 10.1017/S0013091500034428.

[17]

S. Novo and R. Obaya, Strictly ordered mininal subsets of a class of convex monotone skew-product semiflows, J. Differential Equations, 196 (2004), 249-288. doi: 10.1016/S0022-0396(03)00152-9.

[18]

S. Novo, R. Obaya and A. M. Sanz, Attractor minimal sets for cooperative and strongly convex delay differential system, J. Differential Equations, 208 (2005), 86-123. doi: 10.1016/j.jde.2004.01.002.

[19]

C. Núñez, R. Obaya and A. M. Sanz, Minimal sets in monotone and sublinear skew-product semiflows I: The general case, J. Differential Equations, 248 (2010), 1899-1925. doi: 10.1016/j.jde.2009.12.007.

[20]

R. J. Sacker and G. R. Sell, Lifting properties in skew-product flows with applications to differential equations, in Memoirs of the American Mathematical Society, 11 (1977), iv+67 pp. doi: 10.1090/memo/0190.

[21]

G. Sell, Topological Dynamics and Ordinary Differential Equations, Van Nostrand Reinhold, London, 1971.

[22]

W. Shen and Y. Yi, Almost automorphic and almost periodic dynamics in skew-product semiflows, Memoirs of Amer. Math. Soc., 136 (1998), x+93 pp. doi: 10.1090/memo/0647.

[23]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, 1995.

[24]

H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambridge University Press, Cambridge, 1995. doi: 10.1017/CBO9780511530043.

[25]

J. W.-H. So, J. Wu and X. Zou, Structured population on two patches: Modeling dispersal and delay, J. Math. Biol., 43 (2001), 37-51. doi: 10.1007/s002850100081.

[26]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6.

[27]

B.-G. Wang and X.-Q. Zhao, Basic reproduction ratios for almost periodic compartmental epidemic models, J. Dyn. Diff. Equ., 25 (2013), 535-562. doi: 10.1007/s10884-013-9304-7.

[28]

W. Wang and X.-Q. Zhao, An epidemic model in a patchy environment, Math. Biosci., 190 (2004), 97-112. doi: 10.1016/j.mbs.2002.11.001.

[29]

W. Wang and X.-Q. Zhao, An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65 (2005), 1597-1614. doi: 10.1137/S0036139903431245.

[30]

W. Wang and X.-Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equ., 20 (2008), 699-717. doi: 10.1007/s10884-008-9111-8.

[31]

D. Watts, D. Burke, B. Harrison, R. Whitmire and A. Nisalak, Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus, Am. J. Trop. Med. Hyg., 36 (1987), 143-152.

[32]

F. Zhang and X.-Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496-516. doi: 10.1016/j.jmaa.2006.01.085.

[33]

X.-Q. Zhao, Global attractivity in monotone and subhomogeneous almost periodic systems, J. Differential Equations, 187 (2003), 494-509. doi: 10.1016/S0022-0396(02)00054-2.

[34]

X.-Q. Zhao, Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003. doi: 10.1007/978-0-387-21761-1.

[1]

Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170

[2]

Liang Zhang, Zhi-Cheng Wang. Threshold dynamics of a reaction-diffusion epidemic model with stage structure. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3797-3820. doi: 10.3934/dcdsb.2017191

[3]

Lin Zhao, Zhi-Cheng Wang, Liang Zhang. Threshold dynamics of a time periodic and two–group epidemic model with distributed delay. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1535-1563. doi: 10.3934/mbe.2017080

[4]

Yijun Lou, Xiao-Qiang Zhao. Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 169-186. doi: 10.3934/dcdsb.2009.12.169

[5]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

[6]

Bin-Guo Wang, Wan-Tong Li, Lizhong Qiang. An almost periodic epidemic model in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 271-289. doi: 10.3934/dcdsb.2016.21.271

[7]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[8]

Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166

[9]

Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba. A multi-group SIR epidemic model with age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3515-3550. doi: 10.3934/dcdsb.2016109

[10]

Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220

[11]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[12]

Adel Settati, Aadil Lahrouz, Mustapha El Jarroudi, Mohamed El Fatini, Kai Wang. On the threshold dynamics of the stochastic SIRS epidemic model using adequate stopping times. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1985-1997. doi: 10.3934/dcdsb.2020012

[13]

Toshikazu Kuniya, Yoshiaki Muroya, Yoichi Enatsu. Threshold dynamics of an SIR epidemic model with hybrid of multigroup and patch structures. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1375-1393. doi: 10.3934/mbe.2014.11.1375

[14]

Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2057-2092. doi: 10.3934/dcdsb.2019202

[15]

Yan-Xia Dang, Zhi-Peng Qiu, Xue-Zhi Li, Maia Martcheva. Global dynamics of a vector-host epidemic model with age of infection. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1159-1186. doi: 10.3934/mbe.2017060

[16]

Jaume Llibre, Claudio Vidal. Hopf periodic orbits for a ratio--dependent predator--prey model with stage structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1859-1867. doi: 10.3934/dcdsb.2016026

[17]

Zhenguo Bai. Threshold dynamics of a periodic SIR model with delay in an infected compartment. Mathematical Biosciences & Engineering, 2015, 12 (3) : 555-564. doi: 10.3934/mbe.2015.12.555

[18]

Lili Liu, Xianning Liu, Jinliang Wang. Threshold dynamics of a delayed multi-group heroin epidemic model in heterogeneous populations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2615-2630. doi: 10.3934/dcdsb.2016064

[19]

Xin Zhao, Tao Feng, Liang Wang, Zhipeng Qiu. Threshold dynamics and sensitivity analysis of a stochastic semi-Markov switched SIRS epidemic model with nonlinear incidence and vaccination. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6131-6154. doi: 10.3934/dcdsb.2021010

[20]

Shuang-Ming Wang, Zhaosheng Feng, Zhi-Cheng Wang, Liang Zhang. Spreading speed and periodic traveling waves of a time periodic and diffusive SI epidemic model with demographic structure. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2005-2034. doi: 10.3934/cpaa.2021145

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (237)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]