Citation: |
[1] |
P. B. Bailey, L. F. Shampine and P. Waltman, Nonlinear two Point Boundary Value Problem, Math. in Science and Engineering, Vol. 44, Academic Press, 1968. |
[2] |
G. Butler, H. I. Freedman and P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 96 (1986), 425-430.doi: 10.1090/S0002-9939-1986-0822433-4. |
[3] |
G. Butler and P. Waltman, Persistence in dynamical systems, J. Diff. Eqns., 63 (1986), 255-263.doi: 10.1016/0022-0396(86)90049-5. |
[4] |
J. K. Hale and P. Waltman, Persistence in infinite dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.doi: 10.1137/0520025. |
[5] |
S. R. Hansen and S. P. Hubbell, Single nutrient microbial competition: Agreement between experiment and theoretical forecast outcomes, Science, 207 (1980), 1491-1493. |
[6] |
S. B. Hsu, S. P. Hubbell and P. Waltman, A mathematical theory for single nutrient competition in continuous cultures of micro-organisms, SIAM J. Appl. Math., 32 (1977), 366-383.doi: 10.1137/0132030. |
[7] |
P. Waltman, A brief survey of persistence in dynamical systems, Delay differential equations and dynamical systems (Claremont, CA, 1990), 31-40, Lecture Notes in Math., 1475, Springer, Berlin, 1991.doi: 10.1007/BFb0083477. |
[8] |
P. Waltman, Deterministic Threshold Models in the Theory of Epidemics, Lecture Notes in Biomathematics, Springer-Verlag, 1974. |
[9] |
H. L. Smith and P. Waltman, The Theory of the Chemostat, Cambrige Univertsity Press, 1995.doi: 10.1017/CBO9780511530043. |
[10] |
P. Waltman, Competition Models in Population Biology, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 45, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 1983.doi: 10.1137/1.9781611970258. |