Citation: |
[1] |
P. Andersen, J. C. Eccles and Y. Loyning, Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses, Nature, 198 (1963), 540-542. |
[2] |
M. C. Ashby and J. T. Isaac, Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines, Neuron, 70 (2011), 510-521. |
[3] |
E. Benoit, J. L. Callot, F. Diener and D. M., Chasse au canard, Collect. Math., 32 (1981), 37-119. |
[4] |
S. A. Campbell and Y. Yuan, Zero singularities of codimension two and three in delay differential equations, Nonlinearity, 21 (2008), 2671-2691.doi: 10.1088/0951-7715/21/11/010. |
[5] |
A. M. Castelfranco and H. W. Stech, Periodic solutions in a model of recurrent neural feedback, SIAM J. Appl. Math., 47 (1987), 573-588.doi: 10.1137/0147039. |
[6] |
T. R. Chay, Chaos in a three-variable model of an excitable cell, Physica D: Nonlinear phenomena, 16 (1985), 233-242.doi: 10.1016/0167-2789(85)90060-0. |
[7] |
T. R. Chay, Glucose response to bursting-spiking pancreatic $\beta$-cells by a barrier kinetic model, Biol. Cybern., 52 (1985), 339-349. |
[8] |
T. R. Chay and J. Keizer, Theory of the effect of extracellular potassium on oscillations in the pancreatic beta-cell, Biophysical J., 48 (1985), 815-827.doi: 10.1016/S0006-3495(85)83840-6. |
[9] |
T. R. Chay and J. Rinzel, Bursting, beating, and chaos in an excitable membrane model, Biophysical J., 47 (1985), 357-366.doi: 10.1016/S0006-3495(85)83926-6. |
[10] |
S. S. Chen, C. Y. Cheng and Y.-R. Lin, Application of a two-dimensional Hindmarsh-Rose type model for bifurcation analysis, Int. J. Bifurcation Chaos, 23 (2013), 1350055, 21pp.doi: 10.1142/S0218127413500557. |
[11] |
J. A. Connor and C. F. Stevens, Inward and delayed outward membrane currents in isolated neural somata under voltage clamp, J. Physiol., 213 (1971), 1-19.doi: 10.1113/jphysiol.1971.sp009364. |
[12] |
J. A. Connor, D. Walter and R. McKown, Neural repetitive firing: Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons, Biophysical Journal, 18 (1977), 81-102.doi: 10.1016/S0006-3495(77)85598-7. |
[13] |
K. Cooke and Z. Grossman, Discrete delay, distributed delay and stabilit switches, J. Math. Anal. Appl., 86 (1982), 592-627.doi: 10.1016/0022-247X(82)90243-8. |
[14] |
G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear and K. Friston, The dynamic brain: from spiking neurons to neural masses and cortical fields, PLOS computational biology, 4 (2008), e1000092.doi: 10.1371/journal.pcbi.1000092. |
[15] |
M. Desroches, B. Krauskopf and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled Fitzhugh-Nagumo system, Chaos, 18 (2008), 015017, 8pp.doi: 10.1063/1.2799471. |
[16] |
M. Dichter and W. A. Spencer, Penicillin-induced interictal discharges from the cat hippocampus, II. mechanisms underlying orgin and restriction, J. Neurophyiol., 32 (1969), 663-687. |
[17] |
R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin and H. H. Suarez, Recurrent excitation in neocortical circuits, Science, 269 (1995), 981-985.doi: 10.1126/science.7638624. |
[18] |
V. Dragoi and M. Sur, Dynamic properties of recurrent inhibition in primary visual cortex: Contrast and orientation dependence of contextual effects, J Neurophysiol, 83 (2000), 1019-1030. |
[19] |
I. Erchova and D. J. McGonigle, Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data, Chaos, 18 (2008), 015115, 14pp.doi: 10.1063/1.2900015. |
[20] |
R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophys. J., 1 (1961), 445-466.doi: 10.1016/S0006-3495(61)86902-6. |
[21] |
J. K. Hale, Theory of Functional Differential Equations, Applied mathematical sciences. Springer-Verlag, 1977. |
[22] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf bifurcation, Cambridge University Press, Cambridge, 1981. |
[23] |
J. L. Hindmarsh and R. M. Rose, A model of the nerve impluse using two first-order differential equations, Nature, 296 (1982), 162-164. |
[24] |
J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equaions, Proc. R. Soc. Lond. B Biol. Sci., 221 (1984), 87-102. |
[25] |
A. L. Hodgkin and A. F. Huxley, A qualitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. |
[26] |
R. Katz and E. Pierrot-Deseilligny, Recurrent inhibition in humans, Progress in Neurobiology, 57 (1999), 325-355.doi: 10.1016/S0301-0082(98)00056-2. |
[27] |
M. T. M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram, Physica D, 80 (1995), 72-94.doi: 10.1016/0167-2789(95)90061-6. |
[28] |
M. Krupa, N. Popović, N. Kopell and H. G. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron, Chaos, 18 (2008), 015106, 19pp.doi: 10.1063/1.2779859. |
[29] |
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (3rd ed.), Number 112 in Applied Mathematical Sciences. Springer Verlag New York, 2004.doi: 10.1007/978-1-4757-3978-7. |
[30] |
S. Ma and Z. S. Feng, Fold-hopf bifurcations of the Rose-Hindmarsh model with time delay, Int. J. Bifurcation and Chaos, 21 (2011), 437-452.doi: 10.1142/S0218127411028490. |
[31] |
S. Ma, Z. S. Feng and Q. S. Lu, Dynamics and double hopf bifurcations of the Rose-Hindmarsh model with time delay, Int. J. Bifurcation and Chaos, 19 (2009), 3733-3751.doi: 10.1142/S0218127409025080. |
[32] |
M. C. Mackey and U. an der Heiden, The dynamics of recurrent inhibition, J Math Biol, 19 (1984), 211-225.doi: 10.1007/BF00277747. |
[33] |
B. Mattei, A. Schmied, R. Mazzocchio, B. Decchi, A. Rossi and J. P. Vedel, Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns, J Physiol, 548 (2003), 615-629. |
[34] |
A. Mitra, S. S. Mitra and R. W. Tsien, Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity, Nature Neuroscience, 15 (2012), 250-257.doi: 10.1038/nn.3004. |
[35] |
J. S. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon, Proc. IRE, 50 (1962), 2061-2071.doi: 10.1109/JRPROC.1962.288235. |
[36] |
V. Petrov, S. Scott and K. Showalter, Mixed mode oscillations in chemical systems, J. Chem. Phys., 97 (1992), p6191.doi: 10.1063/1.463727. |
[37] |
R. E. Plant, A FitzHugh differential-difference equation modeling recurrent neural feedback, SIAM Journal on applied mathematics, 40 (1981), 150-162.doi: 10.1137/0140012. |
[38] |
R. M. Rose and J. L. Hindmarsh, The assembly of ionic currents in a thalamic neuron I. the three-dimensional model, Proc. R. Soc. Lond. B, 237 (1989), 267-288.doi: 10.1098/rspb.1989.0049. |
[39] |
J. Rubin and M. Wechselberger, The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple time scales, Chaos, 18 (2008), 015105, 12pp.doi: 10.1063/1.2789564. |
[40] |
A. Sherman, J. Rinzel and J. Keizer, Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing, Biophysical J., 54 (1988), 411-425.doi: 10.1016/S0006-3495(88)82975-8. |
[41] |
K. J. Stratford, K. Tarczy-Hornoch, K. A. Martin, N. J. Bannister and J. J. Jack, Excitatory synaptic inputs to spiny stellate cells in cat visual cortex, Nature, 382 (1996), 258-261.doi: 10.1038/382258a0. |
[42] |
S. Tsuji, T. Ueta, H. Kawakami, H. Fujii and K. Aihara, Bifurcations in two-dimensional Hindmarsh-Rose type model, Int. J. Bifurcation and Chaos, 17 (2007), 985-998.doi: 10.1142/S0218127407017707. |
[43] |
T. Uchiyama and U. Windhorst, Effects of spinal recurrent inhibition on motoneuron short-term synchronization, Biol. Cybern., 96 (2007), 561-575.doi: 10.1007/s00422-007-0151-7. |
[44] |
U. Windhorst, On the role of recurrent inhibitory feedback in motor control}, Prog Neurobiol, 49 (1996), 517-587.doi: 10.1016/0301-0082(96)00023-8. |
[45] |
L. Zemanova, C. Zhou and J. Kurths, Structural and functional clusters of complex brain networks, Physica D, 224 (2006), 202-212.doi: 10.1016/j.physd.2006.09.008. |
[46] |
F. Zhang, W. Zhang, P. Meng and J. Z. Su, Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling, Discrete and Continuous Dynamical Systems-B, 16 (2011), 637-651.doi: 10.3934/dcdsb.2011.16.637. |