• Previous Article
    Stochastic PDE model for spatial population growth in random environments
  • DCDS-B Home
  • This Issue
  • Next Article
    A diffusive logistic problem with a free boundary in time-periodic environment: Favorable habitat or unfavorable habitat
January  2016, 21(1): 37-53. doi: 10.3934/dcdsb.2016.21.37

Delay-induced mixed-mode oscillations in a 2D Hindmarsh-Rose-type model

1. 

Department of Mathematics, National Taiwan Normal University, 88, Ting-chou Rd., Sec. 4, Taipei 116, Taiwan

2. 

Department of Applied Mathematics, National Pingtung University, Pingtung, Taiwan

Received  February 2013 Revised  May 2015 Published  November 2015

In this study, we investigate a Hindmarsh-Rose-type model with the structure of recurrent neural feedback. The number of equilibria and their stability for the model with zero delay are reviewed first. We derive conditions for the existence of a Hopf bifurcation in the model and derive equations for the direction and stability of the bifurcation with delay as the bifurcation parameter. The ranges of parameter values for the existence of a Hopf bifurcation and the system responses with various levels of delay are obtained. When a Hopf bifurcation due to delay occurs, canard-like mixed-mode oscillations (MMOs) are produced at the parameter value for which either the fold bifurcation of cycles or homoclinic bifurcation occurs in the system without delay. This behavior can be found in a planar system with delay but not in a planar system without delay. Therefore, the results of this study will be helpful for determining suitable parameters to represent MMOs with a simple system with delay.
Citation: Shyan-Shiou Chen, Chang-Yuan Cheng. Delay-induced mixed-mode oscillations in a 2D Hindmarsh-Rose-type model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 37-53. doi: 10.3934/dcdsb.2016.21.37
References:
[1]

P. Andersen, J. C. Eccles and Y. Loyning, Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses,, Nature, 198 (1963), 540.   Google Scholar

[2]

M. C. Ashby and J. T. Isaac, Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines,, Neuron, 70 (2011), 510.   Google Scholar

[3]

E. Benoit, J. L. Callot, F. Diener and D. M., Chasse au canard,, Collect. Math., 32 (1981), 37.   Google Scholar

[4]

S. A. Campbell and Y. Yuan, Zero singularities of codimension two and three in delay differential equations,, Nonlinearity, 21 (2008), 2671.  doi: 10.1088/0951-7715/21/11/010.  Google Scholar

[5]

A. M. Castelfranco and H. W. Stech, Periodic solutions in a model of recurrent neural feedback,, SIAM J. Appl. Math., 47 (1987), 573.  doi: 10.1137/0147039.  Google Scholar

[6]

T. R. Chay, Chaos in a three-variable model of an excitable cell,, Physica D: Nonlinear phenomena, 16 (1985), 233.  doi: 10.1016/0167-2789(85)90060-0.  Google Scholar

[7]

T. R. Chay, Glucose response to bursting-spiking pancreatic $\beta$-cells by a barrier kinetic model,, Biol. Cybern., 52 (1985), 339.   Google Scholar

[8]

T. R. Chay and J. Keizer, Theory of the effect of extracellular potassium on oscillations in the pancreatic beta-cell,, Biophysical J., 48 (1985), 815.  doi: 10.1016/S0006-3495(85)83840-6.  Google Scholar

[9]

T. R. Chay and J. Rinzel, Bursting, beating, and chaos in an excitable membrane model,, Biophysical J., 47 (1985), 357.  doi: 10.1016/S0006-3495(85)83926-6.  Google Scholar

[10]

S. S. Chen, C. Y. Cheng and Y.-R. Lin, Application of a two-dimensional Hindmarsh-Rose type model for bifurcation analysis,, Int. J. Bifurcation Chaos, 23 (2013).  doi: 10.1142/S0218127413500557.  Google Scholar

[11]

J. A. Connor and C. F. Stevens, Inward and delayed outward membrane currents in isolated neural somata under voltage clamp,, J. Physiol., 213 (1971), 1.  doi: 10.1113/jphysiol.1971.sp009364.  Google Scholar

[12]

J. A. Connor, D. Walter and R. McKown, Neural repetitive firing: Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons,, Biophysical Journal, 18 (1977), 81.  doi: 10.1016/S0006-3495(77)85598-7.  Google Scholar

[13]

K. Cooke and Z. Grossman, Discrete delay, distributed delay and stabilit switches,, J. Math. Anal. Appl., 86 (1982), 592.  doi: 10.1016/0022-247X(82)90243-8.  Google Scholar

[14]

G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear and K. Friston, The dynamic brain: from spiking neurons to neural masses and cortical fields,, PLOS computational biology, 4 (2008).  doi: 10.1371/journal.pcbi.1000092.  Google Scholar

[15]

M. Desroches, B. Krauskopf and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled Fitzhugh-Nagumo system,, Chaos, 18 (2008).  doi: 10.1063/1.2799471.  Google Scholar

[16]

M. Dichter and W. A. Spencer, Penicillin-induced interictal discharges from the cat hippocampus, II. mechanisms underlying orgin and restriction,, J. Neurophyiol., 32 (1969), 663.   Google Scholar

[17]

R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin and H. H. Suarez, Recurrent excitation in neocortical circuits,, Science, 269 (1995), 981.  doi: 10.1126/science.7638624.  Google Scholar

[18]

V. Dragoi and M. Sur, Dynamic properties of recurrent inhibition in primary visual cortex: Contrast and orientation dependence of contextual effects,, J Neurophysiol, 83 (2000), 1019.   Google Scholar

[19]

I. Erchova and D. J. McGonigle, Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data,, Chaos, 18 (2008).  doi: 10.1063/1.2900015.  Google Scholar

[20]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[21]

J. K. Hale, Theory of Functional Differential Equations,, Applied mathematical sciences. Springer-Verlag, (1977).   Google Scholar

[22]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf bifurcation,, Cambridge University Press, (1981).   Google Scholar

[23]

J. L. Hindmarsh and R. M. Rose, A model of the nerve impluse using two first-order differential equations,, Nature, 296 (1982), 162.   Google Scholar

[24]

J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equaions,, Proc. R. Soc. Lond. B Biol. Sci., 221 (1984), 87.   Google Scholar

[25]

A. L. Hodgkin and A. F. Huxley, A qualitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol., 117 (1952), 500.   Google Scholar

[26]

R. Katz and E. Pierrot-Deseilligny, Recurrent inhibition in humans,, Progress in Neurobiology, 57 (1999), 325.  doi: 10.1016/S0301-0082(98)00056-2.  Google Scholar

[27]

M. T. M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram,, Physica D, 80 (1995), 72.  doi: 10.1016/0167-2789(95)90061-6.  Google Scholar

[28]

M. Krupa, N. Popović, N. Kopell and H. G. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron,, Chaos, 18 (2008).  doi: 10.1063/1.2779859.  Google Scholar

[29]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (3rd ed.),, Number 112 in Applied Mathematical Sciences. Springer Verlag New York, (2004).  doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[30]

S. Ma and Z. S. Feng, Fold-hopf bifurcations of the Rose-Hindmarsh model with time delay,, Int. J. Bifurcation and Chaos, 21 (2011), 437.  doi: 10.1142/S0218127411028490.  Google Scholar

[31]

S. Ma, Z. S. Feng and Q. S. Lu, Dynamics and double hopf bifurcations of the Rose-Hindmarsh model with time delay,, Int. J. Bifurcation and Chaos, 19 (2009), 3733.  doi: 10.1142/S0218127409025080.  Google Scholar

[32]

M. C. Mackey and U. an der Heiden, The dynamics of recurrent inhibition,, J Math Biol, 19 (1984), 211.  doi: 10.1007/BF00277747.  Google Scholar

[33]

B. Mattei, A. Schmied, R. Mazzocchio, B. Decchi, A. Rossi and J. P. Vedel, Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns,, J Physiol, 548 (2003), 615.   Google Scholar

[34]

A. Mitra, S. S. Mitra and R. W. Tsien, Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity,, Nature Neuroscience, 15 (2012), 250.  doi: 10.1038/nn.3004.  Google Scholar

[35]

J. S. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[36]

V. Petrov, S. Scott and K. Showalter, Mixed mode oscillations in chemical systems,, J. Chem. Phys., 97 (1992).  doi: 10.1063/1.463727.  Google Scholar

[37]

R. E. Plant, A FitzHugh differential-difference equation modeling recurrent neural feedback,, SIAM Journal on applied mathematics, 40 (1981), 150.  doi: 10.1137/0140012.  Google Scholar

[38]

R. M. Rose and J. L. Hindmarsh, The assembly of ionic currents in a thalamic neuron I. the three-dimensional model,, Proc. R. Soc. Lond. B, 237 (1989), 267.  doi: 10.1098/rspb.1989.0049.  Google Scholar

[39]

J. Rubin and M. Wechselberger, The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple time scales,, Chaos, 18 (2008).  doi: 10.1063/1.2789564.  Google Scholar

[40]

A. Sherman, J. Rinzel and J. Keizer, Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing,, Biophysical J., 54 (1988), 411.  doi: 10.1016/S0006-3495(88)82975-8.  Google Scholar

[41]

K. J. Stratford, K. Tarczy-Hornoch, K. A. Martin, N. J. Bannister and J. J. Jack, Excitatory synaptic inputs to spiny stellate cells in cat visual cortex,, Nature, 382 (1996), 258.  doi: 10.1038/382258a0.  Google Scholar

[42]

S. Tsuji, T. Ueta, H. Kawakami, H. Fujii and K. Aihara, Bifurcations in two-dimensional Hindmarsh-Rose type model,, Int. J. Bifurcation and Chaos, 17 (2007), 985.  doi: 10.1142/S0218127407017707.  Google Scholar

[43]

T. Uchiyama and U. Windhorst, Effects of spinal recurrent inhibition on motoneuron short-term synchronization,, Biol. Cybern., 96 (2007), 561.  doi: 10.1007/s00422-007-0151-7.  Google Scholar

[44]

U. Windhorst, On the role of recurrent inhibitory feedback in motor control},, Prog Neurobiol, 49 (1996), 517.  doi: 10.1016/0301-0082(96)00023-8.  Google Scholar

[45]

L. Zemanova, C. Zhou and J. Kurths, Structural and functional clusters of complex brain networks,, Physica D, 224 (2006), 202.  doi: 10.1016/j.physd.2006.09.008.  Google Scholar

[46]

F. Zhang, W. Zhang, P. Meng and J. Z. Su, Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling,, Discrete and Continuous Dynamical Systems-B, 16 (2011), 637.  doi: 10.3934/dcdsb.2011.16.637.  Google Scholar

show all references

References:
[1]

P. Andersen, J. C. Eccles and Y. Loyning, Recurrent inhibition in the hippocampus with identification of the inhibitory cell and its synapses,, Nature, 198 (1963), 540.   Google Scholar

[2]

M. C. Ashby and J. T. Isaac, Maturation of a recurrent excitatory neocortical circuit by experience-dependent unsilencing of newly formed dendritic spines,, Neuron, 70 (2011), 510.   Google Scholar

[3]

E. Benoit, J. L. Callot, F. Diener and D. M., Chasse au canard,, Collect. Math., 32 (1981), 37.   Google Scholar

[4]

S. A. Campbell and Y. Yuan, Zero singularities of codimension two and three in delay differential equations,, Nonlinearity, 21 (2008), 2671.  doi: 10.1088/0951-7715/21/11/010.  Google Scholar

[5]

A. M. Castelfranco and H. W. Stech, Periodic solutions in a model of recurrent neural feedback,, SIAM J. Appl. Math., 47 (1987), 573.  doi: 10.1137/0147039.  Google Scholar

[6]

T. R. Chay, Chaos in a three-variable model of an excitable cell,, Physica D: Nonlinear phenomena, 16 (1985), 233.  doi: 10.1016/0167-2789(85)90060-0.  Google Scholar

[7]

T. R. Chay, Glucose response to bursting-spiking pancreatic $\beta$-cells by a barrier kinetic model,, Biol. Cybern., 52 (1985), 339.   Google Scholar

[8]

T. R. Chay and J. Keizer, Theory of the effect of extracellular potassium on oscillations in the pancreatic beta-cell,, Biophysical J., 48 (1985), 815.  doi: 10.1016/S0006-3495(85)83840-6.  Google Scholar

[9]

T. R. Chay and J. Rinzel, Bursting, beating, and chaos in an excitable membrane model,, Biophysical J., 47 (1985), 357.  doi: 10.1016/S0006-3495(85)83926-6.  Google Scholar

[10]

S. S. Chen, C. Y. Cheng and Y.-R. Lin, Application of a two-dimensional Hindmarsh-Rose type model for bifurcation analysis,, Int. J. Bifurcation Chaos, 23 (2013).  doi: 10.1142/S0218127413500557.  Google Scholar

[11]

J. A. Connor and C. F. Stevens, Inward and delayed outward membrane currents in isolated neural somata under voltage clamp,, J. Physiol., 213 (1971), 1.  doi: 10.1113/jphysiol.1971.sp009364.  Google Scholar

[12]

J. A. Connor, D. Walter and R. McKown, Neural repetitive firing: Modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons,, Biophysical Journal, 18 (1977), 81.  doi: 10.1016/S0006-3495(77)85598-7.  Google Scholar

[13]

K. Cooke and Z. Grossman, Discrete delay, distributed delay and stabilit switches,, J. Math. Anal. Appl., 86 (1982), 592.  doi: 10.1016/0022-247X(82)90243-8.  Google Scholar

[14]

G. Deco, V. K. Jirsa, P. A. Robinson, M. Breakspear and K. Friston, The dynamic brain: from spiking neurons to neural masses and cortical fields,, PLOS computational biology, 4 (2008).  doi: 10.1371/journal.pcbi.1000092.  Google Scholar

[15]

M. Desroches, B. Krauskopf and H. M. Osinga, Mixed-mode oscillations and slow manifolds in the self-coupled Fitzhugh-Nagumo system,, Chaos, 18 (2008).  doi: 10.1063/1.2799471.  Google Scholar

[16]

M. Dichter and W. A. Spencer, Penicillin-induced interictal discharges from the cat hippocampus, II. mechanisms underlying orgin and restriction,, J. Neurophyiol., 32 (1969), 663.   Google Scholar

[17]

R. J. Douglas, C. Koch, M. Mahowald, K. A. Martin and H. H. Suarez, Recurrent excitation in neocortical circuits,, Science, 269 (1995), 981.  doi: 10.1126/science.7638624.  Google Scholar

[18]

V. Dragoi and M. Sur, Dynamic properties of recurrent inhibition in primary visual cortex: Contrast and orientation dependence of contextual effects,, J Neurophysiol, 83 (2000), 1019.   Google Scholar

[19]

I. Erchova and D. J. McGonigle, Rhythms of the brain: An examination of mixed mode oscillation approaches to the analysis of neurophysiological data,, Chaos, 18 (2008).  doi: 10.1063/1.2900015.  Google Scholar

[20]

R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane,, Biophys. J., 1 (1961), 445.  doi: 10.1016/S0006-3495(61)86902-6.  Google Scholar

[21]

J. K. Hale, Theory of Functional Differential Equations,, Applied mathematical sciences. Springer-Verlag, (1977).   Google Scholar

[22]

B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf bifurcation,, Cambridge University Press, (1981).   Google Scholar

[23]

J. L. Hindmarsh and R. M. Rose, A model of the nerve impluse using two first-order differential equations,, Nature, 296 (1982), 162.   Google Scholar

[24]

J. L. Hindmarsh and R. M. Rose, A model of neuronal bursting using three coupled first order differential equaions,, Proc. R. Soc. Lond. B Biol. Sci., 221 (1984), 87.   Google Scholar

[25]

A. L. Hodgkin and A. F. Huxley, A qualitative description of membrane current and its application to conduction and excitation in nerve,, J. Physiol., 117 (1952), 500.   Google Scholar

[26]

R. Katz and E. Pierrot-Deseilligny, Recurrent inhibition in humans,, Progress in Neurobiology, 57 (1999), 325.  doi: 10.1016/S0301-0082(98)00056-2.  Google Scholar

[27]

M. T. M. Koper, Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram,, Physica D, 80 (1995), 72.  doi: 10.1016/0167-2789(95)90061-6.  Google Scholar

[28]

M. Krupa, N. Popović, N. Kopell and H. G. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron,, Chaos, 18 (2008).  doi: 10.1063/1.2779859.  Google Scholar

[29]

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory (3rd ed.),, Number 112 in Applied Mathematical Sciences. Springer Verlag New York, (2004).  doi: 10.1007/978-1-4757-3978-7.  Google Scholar

[30]

S. Ma and Z. S. Feng, Fold-hopf bifurcations of the Rose-Hindmarsh model with time delay,, Int. J. Bifurcation and Chaos, 21 (2011), 437.  doi: 10.1142/S0218127411028490.  Google Scholar

[31]

S. Ma, Z. S. Feng and Q. S. Lu, Dynamics and double hopf bifurcations of the Rose-Hindmarsh model with time delay,, Int. J. Bifurcation and Chaos, 19 (2009), 3733.  doi: 10.1142/S0218127409025080.  Google Scholar

[32]

M. C. Mackey and U. an der Heiden, The dynamics of recurrent inhibition,, J Math Biol, 19 (1984), 211.  doi: 10.1007/BF00277747.  Google Scholar

[33]

B. Mattei, A. Schmied, R. Mazzocchio, B. Decchi, A. Rossi and J. P. Vedel, Pharmacologically induced enhancement of recurrent inhibition in humans: Effects on motoneurone discharge patterns,, J Physiol, 548 (2003), 615.   Google Scholar

[34]

A. Mitra, S. S. Mitra and R. W. Tsien, Heterogeneous reallocation of presynaptic efficacy in recurrent excitatory circuits adapting to inactivity,, Nature Neuroscience, 15 (2012), 250.  doi: 10.1038/nn.3004.  Google Scholar

[35]

J. S. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon,, Proc. IRE, 50 (1962), 2061.  doi: 10.1109/JRPROC.1962.288235.  Google Scholar

[36]

V. Petrov, S. Scott and K. Showalter, Mixed mode oscillations in chemical systems,, J. Chem. Phys., 97 (1992).  doi: 10.1063/1.463727.  Google Scholar

[37]

R. E. Plant, A FitzHugh differential-difference equation modeling recurrent neural feedback,, SIAM Journal on applied mathematics, 40 (1981), 150.  doi: 10.1137/0140012.  Google Scholar

[38]

R. M. Rose and J. L. Hindmarsh, The assembly of ionic currents in a thalamic neuron I. the three-dimensional model,, Proc. R. Soc. Lond. B, 237 (1989), 267.  doi: 10.1098/rspb.1989.0049.  Google Scholar

[39]

J. Rubin and M. Wechselberger, The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple time scales,, Chaos, 18 (2008).  doi: 10.1063/1.2789564.  Google Scholar

[40]

A. Sherman, J. Rinzel and J. Keizer, Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing,, Biophysical J., 54 (1988), 411.  doi: 10.1016/S0006-3495(88)82975-8.  Google Scholar

[41]

K. J. Stratford, K. Tarczy-Hornoch, K. A. Martin, N. J. Bannister and J. J. Jack, Excitatory synaptic inputs to spiny stellate cells in cat visual cortex,, Nature, 382 (1996), 258.  doi: 10.1038/382258a0.  Google Scholar

[42]

S. Tsuji, T. Ueta, H. Kawakami, H. Fujii and K. Aihara, Bifurcations in two-dimensional Hindmarsh-Rose type model,, Int. J. Bifurcation and Chaos, 17 (2007), 985.  doi: 10.1142/S0218127407017707.  Google Scholar

[43]

T. Uchiyama and U. Windhorst, Effects of spinal recurrent inhibition on motoneuron short-term synchronization,, Biol. Cybern., 96 (2007), 561.  doi: 10.1007/s00422-007-0151-7.  Google Scholar

[44]

U. Windhorst, On the role of recurrent inhibitory feedback in motor control},, Prog Neurobiol, 49 (1996), 517.  doi: 10.1016/0301-0082(96)00023-8.  Google Scholar

[45]

L. Zemanova, C. Zhou and J. Kurths, Structural and functional clusters of complex brain networks,, Physica D, 224 (2006), 202.  doi: 10.1016/j.physd.2006.09.008.  Google Scholar

[46]

F. Zhang, W. Zhang, P. Meng and J. Z. Su, Bifurcation analysis of bursting solutions of two Hindmarsh-Rose neurons with joint electrical and synaptic coupling,, Discrete and Continuous Dynamical Systems-B, 16 (2011), 637.  doi: 10.3934/dcdsb.2011.16.637.  Google Scholar

[1]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[2]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[3]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[4]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[7]

Zonghong Cao, Jie Min. Selection and impact of decision mode of encroachment and retail service in a dual-channel supply chain. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020167

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[10]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[11]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[12]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[14]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[15]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[16]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]