March  2016, 21(2): 399-415. doi: 10.3934/dcdsb.2016.21.399

Computation of $\mathcal R $ in age-structured epidemiological models with maternal and temporary immunity

1. 

Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States, United States

2. 

Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094

3. 

National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, 1600 Clifton Road, NE, Atlanta, GA 30333, United States

4. 

National Center for Immunization and Respiratory Diseases, 1600 Clifton Road, NE, Atlanta, GA 30333, United States

Received  April 2015 Revised  August 2015 Published  November 2015

For infectious diseases such as pertussis, susceptibility is determined by immunity, which is chronological age-dependent. We consider an age-structured epidemiological model that accounts for both passively acquired maternal antibodies that decay and active immunity that wanes, permitting re-infection. The model is a 6-dimensional system of partial differential equations (PDE). By assuming constant rates within each age-group, the PDE system can be reduced to an ordinary differential equation (ODE) system with aging from one age-group to the next. We derive formulae for the effective reproduction number ${\mathcal R}$ and provide their biological interpretation in some special cases. We show that the disease-free equilibrium is stable when ${\mathcal R}<1$ and unstable if ${\mathcal R}>1$.
Citation: Zhilan Feng, Qing Han, Zhipeng Qiu, Andrew N. Hill, John W. Glasser. Computation of $\mathcal R $ in age-structured epidemiological models with maternal and temporary immunity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 399-415. doi: 10.3934/dcdsb.2016.21.399
References:
[1]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation,, Wiley Series in Mathematical and Computational Biology, (2000).   Google Scholar

[2]

C. Dye and B. G. Williams, Eliminating human tuberculosis in the twenty-first century,, J. R. Soc. Interface, 5 (2008), 653.  doi: 10.1098/rsif.2007.1138.  Google Scholar

[3]

Z. Feng, J. W. Glasser, A. N. Hill, M. A. Franko, R. M. Carlsson, H. Hallander, P. Tull and P. Olin, Modeling rates of infection with transient maternal antibodies and waning active immunity: Applicationto Bordetella pertussis in Sweden,, J. Theor. Biol., 356 (2014), 123.  doi: 10.1016/j.jtbi.2014.04.020.  Google Scholar

[4]

J. Glasser, Z. Feng, A. Moylan, S. Del Valled and C. Castillo-Chavez, Mixing in age-structured population models of infectious diseases,, Math. Biosci., 235 (2012), 1.  doi: 10.1016/j.mbs.2011.10.001.  Google Scholar

[5]

H. W. Hethcote, An age-structured model for pertussis transmission,, Math. Biosci., 145 (1997), 89.  doi: 10.1016/S0025-5564(97)00014-X.  Google Scholar

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[7]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge University, (1991).  doi: 10.1017/CBO9780511840371.  Google Scholar

[8]

J. A. Jacquez, C. P. Simon, J. Koopman, L. Sattenspiel and T. Perry, Modeling and analyzing HIV transmission: The effect of contact patterns,, Math. Biosci., 92 (1988), 119.  doi: 10.1016/0025-5564(88)90031-4.  Google Scholar

[9]

H. Inaba, Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model,, J. Math. Biol., 54 (2007), 101.  doi: 10.1007/s00285-006-0033-y.  Google Scholar

[10]

T. Kuniya and H. Inaba, Endemic threshold results for an agestructured SIS epidemic model with periodic parameters,, J. Math. Anal. Appl., 402 (2013), 477.  doi: 10.1016/j.jmaa.2013.01.044.  Google Scholar

[11]

J. Mossong, N. Hens and M. Jit, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases,, PLoS Med., 5 (2008).  doi: 10.1371/journal.pmed.0050074.  Google Scholar

[12]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time-heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188.  doi: 10.1137/080732870.  Google Scholar

[13]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

show all references

References:
[1]

O. Diekmann and J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases Model Building, Analysis and Interpretation,, Wiley Series in Mathematical and Computational Biology, (2000).   Google Scholar

[2]

C. Dye and B. G. Williams, Eliminating human tuberculosis in the twenty-first century,, J. R. Soc. Interface, 5 (2008), 653.  doi: 10.1098/rsif.2007.1138.  Google Scholar

[3]

Z. Feng, J. W. Glasser, A. N. Hill, M. A. Franko, R. M. Carlsson, H. Hallander, P. Tull and P. Olin, Modeling rates of infection with transient maternal antibodies and waning active immunity: Applicationto Bordetella pertussis in Sweden,, J. Theor. Biol., 356 (2014), 123.  doi: 10.1016/j.jtbi.2014.04.020.  Google Scholar

[4]

J. Glasser, Z. Feng, A. Moylan, S. Del Valled and C. Castillo-Chavez, Mixing in age-structured population models of infectious diseases,, Math. Biosci., 235 (2012), 1.  doi: 10.1016/j.mbs.2011.10.001.  Google Scholar

[5]

H. W. Hethcote, An age-structured model for pertussis transmission,, Math. Biosci., 145 (1997), 89.  doi: 10.1016/S0025-5564(97)00014-X.  Google Scholar

[6]

H. W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.  doi: 10.1137/S0036144500371907.  Google Scholar

[7]

R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,, Cambridge University, (1991).  doi: 10.1017/CBO9780511840371.  Google Scholar

[8]

J. A. Jacquez, C. P. Simon, J. Koopman, L. Sattenspiel and T. Perry, Modeling and analyzing HIV transmission: The effect of contact patterns,, Math. Biosci., 92 (1988), 119.  doi: 10.1016/0025-5564(88)90031-4.  Google Scholar

[9]

H. Inaba, Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model,, J. Math. Biol., 54 (2007), 101.  doi: 10.1007/s00285-006-0033-y.  Google Scholar

[10]

T. Kuniya and H. Inaba, Endemic threshold results for an agestructured SIS epidemic model with periodic parameters,, J. Math. Anal. Appl., 402 (2013), 477.  doi: 10.1016/j.jmaa.2013.01.044.  Google Scholar

[11]

J. Mossong, N. Hens and M. Jit, et al., Social contacts and mixing patterns relevant to the spread of infectious diseases,, PLoS Med., 5 (2008).  doi: 10.1371/journal.pmed.0050074.  Google Scholar

[12]

H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time-heterogeneity,, SIAM J. Appl. Math., 70 (2009), 188.  doi: 10.1137/080732870.  Google Scholar

[13]

P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,, Math. Biosci., 180 (2002), 29.  doi: 10.1016/S0025-5564(02)00108-6.  Google Scholar

[1]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[5]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[9]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[13]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[14]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[15]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[16]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[17]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[18]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[19]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[20]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

[Back to Top]