March  2016, 21(2): 523-536. doi: 10.3934/dcdsb.2016.21.523

Competition of two phytoplankton species for light with wavelength

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 300, Taiwan

Received  December 2014 Revised  May 2015 Published  November 2015

We study the competition of two phytoplankton species for a single resource-light with wavelength in a well mixed water column. The model was proposed by Stomp et al. in 2007, in this model each species prefers different interval of light spectrum. Their experimental results show that colorful phytoplankton species coexist.
    We classify the global behavior of the model by stability of equilibrium and the theory of monotone dynamical systems. The conclusion is that one of the following holds: one species competitively excludes the other, two species coexist, bistability of two species. We also analyze the special case when species have linear growth function, and the outcome is either competitive exclusion or two species coexistence; the results are consistent with the Stomp's experiments in 2004.
Citation: Chiu-Ju Lin. Competition of two phytoplankton species for light with wavelength. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 523-536. doi: 10.3934/dcdsb.2016.21.523
References:
[1]

G. Hardin et al., The competitive exclusion principle,, science, 131 (1960), 1292. Google Scholar

[2]

S. B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces,, Trans. Amer. Math. Soc., 348 (1996), 4083. doi: 10.1090/S0002-9947-96-01724-2. Google Scholar

[3]

S.-B. Hsu, Ordinary Differential Equations with Applications, vol. 21 of Series on Applied Mathematics,, $2^{nd}$ edition, (2013). doi: 10.1142/8744. Google Scholar

[4]

S. B. Hsu and T. H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage,, SIAM J. Appl. Math., 68 (2008), 1600. doi: 10.1137/070700784. Google Scholar

[5]

J. Huisman and F. J. Weissing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model,, Ecology, 75 (1994), 507. doi: 10.2307/1939554. Google Scholar

[6]

G. E. Hutchinson, The paradox of the plankton,, American Naturalist, 95 (1961), 137. doi: 10.1086/282171. Google Scholar

[7]

J. Jiang, X. Liang and X. Q. Zhao, Saddle-point behavior for monotone semiflows and reaction-diffusion models,, J. Differential Equations, 203 (2004), 313. doi: 10.1016/j.jde.2004.05.002. Google Scholar

[8]

S. Sathyendranath and T. Platt, Computation of aquatic primary production: Extended formalism to include effect of angular and spectral distribution of light,, Limnology and Oceanography, 34 (1989), 188. doi: 10.4319/lo.1989.34.1.0188. Google Scholar

[9]

H. L. Smith, Monotone Dynamical Systems,, An introduction to the theory of competitive and cooperative systems, (1995). Google Scholar

[10]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Dynamics of microbial competition, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[11]

M. Stomp, J. Huisman, F. de Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien and L. J. Stal, Adaptive divergence in pigment composition promotes phytoplankton biodiversity,, Nature, 432 (2004), 104. doi: 10.1038/nature03044. Google Scholar

[12]

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp and L. J. Stal, Colourful coexistence of red and green picocyanobacteria in lakes and seas,, Ecology Letters, 10 (2007), 290. doi: 10.1111/j.1461-0248.2007.01026.x. Google Scholar

show all references

References:
[1]

G. Hardin et al., The competitive exclusion principle,, science, 131 (1960), 1292. Google Scholar

[2]

S. B. Hsu, H. L. Smith and P. Waltman, Competitive exclusion and coexistence for competitive systems on ordered Banach spaces,, Trans. Amer. Math. Soc., 348 (1996), 4083. doi: 10.1090/S0002-9947-96-01724-2. Google Scholar

[3]

S.-B. Hsu, Ordinary Differential Equations with Applications, vol. 21 of Series on Applied Mathematics,, $2^{nd}$ edition, (2013). doi: 10.1142/8744. Google Scholar

[4]

S. B. Hsu and T. H. Hsu, Competitive exclusion of microbial species for a single nutrient with internal storage,, SIAM J. Appl. Math., 68 (2008), 1600. doi: 10.1137/070700784. Google Scholar

[5]

J. Huisman and F. J. Weissing, Light-limited growth and competition for light in well-mixed aquatic environments: An elementary model,, Ecology, 75 (1994), 507. doi: 10.2307/1939554. Google Scholar

[6]

G. E. Hutchinson, The paradox of the plankton,, American Naturalist, 95 (1961), 137. doi: 10.1086/282171. Google Scholar

[7]

J. Jiang, X. Liang and X. Q. Zhao, Saddle-point behavior for monotone semiflows and reaction-diffusion models,, J. Differential Equations, 203 (2004), 313. doi: 10.1016/j.jde.2004.05.002. Google Scholar

[8]

S. Sathyendranath and T. Platt, Computation of aquatic primary production: Extended formalism to include effect of angular and spectral distribution of light,, Limnology and Oceanography, 34 (1989), 188. doi: 10.4319/lo.1989.34.1.0188. Google Scholar

[9]

H. L. Smith, Monotone Dynamical Systems,, An introduction to the theory of competitive and cooperative systems, (1995). Google Scholar

[10]

H. L. Smith and P. Waltman, The Theory of the Chemostat,, Dynamics of microbial competition, (1995). doi: 10.1017/CBO9780511530043. Google Scholar

[11]

M. Stomp, J. Huisman, F. de Jongh, A. J. Veraart, D. Gerla, M. Rijkeboer, B. W. Ibelings, U. I. Wollenzien and L. J. Stal, Adaptive divergence in pigment composition promotes phytoplankton biodiversity,, Nature, 432 (2004), 104. doi: 10.1038/nature03044. Google Scholar

[12]

M. Stomp, J. Huisman, L. Vörös, F. R. Pick, M. Laamanen, T. Haverkamp and L. J. Stal, Colourful coexistence of red and green picocyanobacteria in lakes and seas,, Ecology Letters, 10 (2007), 290. doi: 10.1111/j.1461-0248.2007.01026.x. Google Scholar

[1]

Hao Wang, Katherine Dunning, James J. Elser, Yang Kuang. Daphnia species invasion, competitive exclusion, and chaotic coexistence. Discrete & Continuous Dynamical Systems - B, 2009, 12 (2) : 481-493. doi: 10.3934/dcdsb.2009.12.481

[2]

M. R. S. Kulenović, Orlando Merino. Competitive-exclusion versus competitive-coexistence for systems in the plane. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1141-1156. doi: 10.3934/dcdsb.2006.6.1141

[3]

Yixiang Wu, Necibe Tuncer, Maia Martcheva. Coexistence and competitive exclusion in an SIS model with standard incidence and diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 1167-1187. doi: 10.3934/dcdsb.2017057

[4]

Azmy S. Ackleh, Youssef M. Dib, S. R.-J. Jang. Competitive exclusion and coexistence in a nonlinear refuge-mediated selection model. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 683-698. doi: 10.3934/dcdsb.2007.7.683

[5]

Azmy S. Ackleh, Keng Deng, Yixiang Wu. Competitive exclusion and coexistence in a two-strain pathogen model with diffusion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 1-18. doi: 10.3934/mbe.2016.13.1

[6]

Luc Bergé, Stefan Skupin. Modeling ultrashort filaments of light. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1099-1139. doi: 10.3934/dcds.2009.23.1099

[7]

Simone Göttlich, Ute Ziegler. Traffic light control: A case study. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 483-501. doi: 10.3934/dcdss.2014.7.483

[8]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[9]

Sze-Bi Hsu, Chiu-Ju Lin. Dynamics of two phytoplankton species competing for light and nutrient with internal storage. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1259-1285. doi: 10.3934/dcdss.2014.7.1259

[10]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[11]

Scott Crass. New light on solving the sextic by iteration: An algorithm using reliable dynamics. Journal of Modern Dynamics, 2011, 5 (2) : 397-408. doi: 10.3934/jmd.2011.5.397

[12]

Danfeng Pang, Hua Nie, Jianhua Wu. Single phytoplankton species growth with light and crowding effect in a water column. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 41-74. doi: 10.3934/dcds.2019003

[13]

Alain Rapaport, Mario Veruete. A new proof of the competitive exclusion principle in the chemostat. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3755-3764. doi: 10.3934/dcdsb.2018314

[14]

Tatsuaki Kimura, Hiroyuki Masuyama, Yutaka Takahashi. Light-tailed asymptotics of GI/G/1-type Markov chains. Journal of Industrial & Management Optimization, 2017, 13 (4) : 2093-2146. doi: 10.3934/jimo.2017033

[15]

Linfeng Mei, Xiaoyan Zhang. On a nonlocal reaction-diffusion-advection system modeling phytoplankton growth with light and nutrients. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 221-243. doi: 10.3934/dcdsb.2012.17.221

[16]

H. L. Smith, X. Q. Zhao. Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 183-191. doi: 10.3934/dcdsb.2001.1.183

[17]

Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012

[18]

Hua Nie, Sze-Bi Hsu, Jianhua Wu. Coexistence solutions of a competition model with two species in a water column. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2691-2714. doi: 10.3934/dcdsb.2015.20.2691

[19]

Georg Hetzer, Tung Nguyen, Wenxian Shen. Coexistence and extinction in the Volterra-Lotka competition model with nonlocal dispersal. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1699-1722. doi: 10.3934/cpaa.2012.11.1699

[20]

Azmy S. Ackleh, Linda J. S. Allen. Competitive exclusion in SIS and SIR epidemic models with total cross immunity and density-dependent host mortality. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 175-188. doi: 10.3934/dcdsb.2005.5.175

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]