March  2016, 21(2): 537-555. doi: 10.3934/dcdsb.2016.21.537

Oscillations in age-structured models of consumer-resource mutualisms

1. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875

2. 

Univ. Bordeaux, IMB, UMR 5251, F-33400 Talence

3. 

Department of Mathematics, University of Miami, Coral Gables, FL 33124-4250

Received  February 2015 Revised  September 2015 Published  November 2015

In consumer-resource interactions, a resource is regarded as a biotic population that helps to maintain the population growth of its consumer, whereas a consumer exploits a resource and then reduces its growth rate. Bi-directional consumer-resource interactions describe the cases where each species acts as both a consumer and a resource of the other, which is the basis of many mutualisms. In uni-directional consumer-resource interactions one species acts as a consumer and the other as a material and/or energy resource while neither acts as both. In this paper we consider an age-structured model for uni-directional consumer-resource mutualisms in which the consumer species has both positive and negative effects on the resource species, while the resource has only a positive effect on the consumer. Examples include a predator-prey system in which the prey is able to kill or consume predator eggs or larvae and the insect pollinator and the host plant relationship in which the plants provide food, seeds, nectar and other resources for the pollinators while the pollinators have both positive and negative effects on the plants. By carrying out local analysis and bifurcation analysis of the model, we discuss the stability of the positive equilibrium and show that under some conditions a non-trivial periodic solution through Hopf bifurcation appears when the maturation parameter passes through some critical values.
Citation: Zhihua Liu, Pierre Magal, Shigui Ruan. Oscillations in age-structured models of consumer-resource mutualisms. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 537-555. doi: 10.3934/dcdsb.2016.21.537
References:
[1]

A. Barkai and C. McQuaid, Predator-prey role reversal in a marine benthic ecosystem, Science, 242 (1988), 62-64. doi: 10.1126/science.242.4875.62.

[2]

J. M. Cushing, Equilibria in systems of interacting strustured populations, J. Math. Biol., 24 (1987), 627-649. doi: 10.1007/BF00275507.

[3]

J. M. Cushing, An Introduction to Structured Population Dynamics, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.

[4]

J. M. Cushing and M. Saleem, A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250. doi: 10.1007/BF01832847.

[5]

A. Ducrot, Z. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518. doi: 10.1016/j.jmaa.2007.09.074.

[6]

M. E. Gurtin and D. S. Levine, On predator-prey interactions with predation dependent on age of prey, Math. Biosci., 47 (1979), 207-219. doi: 10.1016/0025-5564(79)90038-5.

[7]

J. N. Holland and D. L. DeAngelis, Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions, Ecol. Lett., 12 (2009), 1357-1366.

[8]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.

[9]

D. S. Levine, Bifurcating periodic solutions for a class of age-structured predator-prey systems, Bull. Math. Biol., 45 (1983), 901-915. doi: 10.1007/BF02458821.

[10]

J. Li, Dynamics of age-structured predator-prey population model, J. Math. Anal. Appl., 152 (1990), 399-415. doi: 10.1016/0022-247X(90)90073-O.

[11]

Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222. doi: 10.1007/s00033-010-0088-x.

[12]

Z. Liu, P. Magal and S. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011. doi: 10.1016/j.jde.2014.04.018.

[13]

R. H. MacArthur, Geographical Ecology, Harper and Row, New York, 1972.

[14]

P. Magal, Compact attractors for time-periodic age structured population models, Electron. J. Differential Equations, 65 (2001), 1-35.

[15]

P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differential Equations, 14 (2009), 1041-1084.

[16]

P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009), vi+71 pp. doi: 10.1090/S0065-9266-09-00568-7.

[17]

S. Magalhães, A. Janssen, M. Montserrat and M. W. Sabelis, Prey attack and predators defend: Counterattacking prey triggers parental care in predators, Proc. R. Soc. B, 272 (2005), 1929-1933.

[18]

R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900-902. doi: 10.1126/science.177.4052.900.

[19]

R. J. Mitchell, R. E. Irwin, R. J. Flanagan and J. D. Karron, Ecology and evolution of plant pollinator interactions, Ann. Bot., 103 (2009), 1355-1363. doi: 10.1093/aob/mcp122.

[20]

W. M. Murdoch, C. J. Briggs and R. M. Nisbet, Consumer-Resource Dynamics, Princeton University Press, Princeton, 2003.

[21]

G. A. Polis, C. A. Myers and R. D. Holt, The ecology and evolution of intraguild predation: Potential competitors that eat each other, Annu. Rev. Ecol. Syst., 20 (1989), 297-330. doi: 10.1146/annurev.es.20.110189.001501.

[22]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223. doi: 10.1086/282272.

[23]

M. Saleem, Predator-prey relationships: Indiscriminate predation, J. Math. Biol., 21 (1984), 25-34. doi: 10.1007/BF00275220.

[24]

H. R. Thieme, Quasi-compact semigroups via bounded perturbation, in "Advances in Mathematical Population Dynamics: Molecules, Cells and Man'', O. Arino, D. Axelrod and M. Kimmel (Eds), World Sci. Publ., River Edge, NJ, 6 (1997), 691-711.

[25]

E. Venturino, Age-structured predator-prey models, Math. Modelling, 5 (1984), 117-128. doi: 10.1016/0270-0255(84)90020-4.

[26]

Y. Wang and D. L. DeAngelis, Transitions of interaction outcomes in a uni-directional consumer-resource system, J. Theoret. Biol., 280 (2011), 43-49. doi: 10.1016/j.jtbi.2011.03.038.

[27]

Y. Wang, D. L. DeAngelis and J. N. Holland, Uni-directional consumer-resource theory characterizing transitions of interaction outcomes, Ecol. Complexity, 8 (2011), 249-257. doi: 10.1016/j.ecocom.2011.04.002.

[28]

Y. Wang, D. L. DeAngelis and J. N. Holland, Uni-directional Interaction and Plant pollinator robber Coexistence, Bull. Math. Biol., 74 (2012), 2142-2164. doi: 10.1007/s11538-012-9750-0.

show all references

References:
[1]

A. Barkai and C. McQuaid, Predator-prey role reversal in a marine benthic ecosystem, Science, 242 (1988), 62-64. doi: 10.1126/science.242.4875.62.

[2]

J. M. Cushing, Equilibria in systems of interacting strustured populations, J. Math. Biol., 24 (1987), 627-649. doi: 10.1007/BF00275507.

[3]

J. M. Cushing, An Introduction to Structured Population Dynamics, SIAM, Philadelphia, PA, 1998. doi: 10.1137/1.9781611970005.

[4]

J. M. Cushing and M. Saleem, A predator prey model with age structure, J. Math. Biol., 14 (1982), 231-250. doi: 10.1007/BF01832847.

[5]

A. Ducrot, Z. Liu and P. Magal, Essential growth rate for bounded linear perturbation of non-densely defined Cauchy problems, J. Math. Anal. Appl., 341 (2008), 501-518. doi: 10.1016/j.jmaa.2007.09.074.

[6]

M. E. Gurtin and D. S. Levine, On predator-prey interactions with predation dependent on age of prey, Math. Biosci., 47 (1979), 207-219. doi: 10.1016/0025-5564(79)90038-5.

[7]

J. N. Holland and D. L. DeAngelis, Consumer-resource theory predicts dynamic transitions between outcomes of interspecific interactions, Ecol. Lett., 12 (2009), 1357-1366.

[8]

J. N. Holland and D. L. DeAngelis, A consumer-resource approach to the density-dependent population dynamics of mutualism, Ecology, 91 (2010), 1286-1295.

[9]

D. S. Levine, Bifurcating periodic solutions for a class of age-structured predator-prey systems, Bull. Math. Biol., 45 (1983), 901-915. doi: 10.1007/BF02458821.

[10]

J. Li, Dynamics of age-structured predator-prey population model, J. Math. Anal. Appl., 152 (1990), 399-415. doi: 10.1016/0022-247X(90)90073-O.

[11]

Z. Liu, P. Magal and S. Ruan, Hopf bifurcation for non-densely defined Cauchy problems, Z. Angew. Math. Phys., 62 (2011), 191-222. doi: 10.1007/s00033-010-0088-x.

[12]

Z. Liu, P. Magal and S. Ruan, Normal forms for semilinear equations with non-dense domain with applications to age structured models, J. Differential Equations, 257 (2014), 921-1011. doi: 10.1016/j.jde.2014.04.018.

[13]

R. H. MacArthur, Geographical Ecology, Harper and Row, New York, 1972.

[14]

P. Magal, Compact attractors for time-periodic age structured population models, Electron. J. Differential Equations, 65 (2001), 1-35.

[15]

P. Magal and S. Ruan, On semilinear Cauchy problems with non-dense domain, Adv. Differential Equations, 14 (2009), 1041-1084.

[16]

P. Magal and S. Ruan, Center manifolds for semilinear equations with non-dense domain and applications on Hopf bifurcation in age structured models, Mem. Amer. Math. Soc., 202 (2009), vi+71 pp. doi: 10.1090/S0065-9266-09-00568-7.

[17]

S. Magalhães, A. Janssen, M. Montserrat and M. W. Sabelis, Prey attack and predators defend: Counterattacking prey triggers parental care in predators, Proc. R. Soc. B, 272 (2005), 1929-1933.

[18]

R. M. May, Limit cycles in predator-prey communities, Science, 177 (1972), 900-902. doi: 10.1126/science.177.4052.900.

[19]

R. J. Mitchell, R. E. Irwin, R. J. Flanagan and J. D. Karron, Ecology and evolution of plant pollinator interactions, Ann. Bot., 103 (2009), 1355-1363. doi: 10.1093/aob/mcp122.

[20]

W. M. Murdoch, C. J. Briggs and R. M. Nisbet, Consumer-Resource Dynamics, Princeton University Press, Princeton, 2003.

[21]

G. A. Polis, C. A. Myers and R. D. Holt, The ecology and evolution of intraguild predation: Potential competitors that eat each other, Annu. Rev. Ecol. Syst., 20 (1989), 297-330. doi: 10.1146/annurev.es.20.110189.001501.

[22]

M. L. Rosenzweig and R. H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Am. Nat., 97 (1963), 209-223. doi: 10.1086/282272.

[23]

M. Saleem, Predator-prey relationships: Indiscriminate predation, J. Math. Biol., 21 (1984), 25-34. doi: 10.1007/BF00275220.

[24]

H. R. Thieme, Quasi-compact semigroups via bounded perturbation, in "Advances in Mathematical Population Dynamics: Molecules, Cells and Man'', O. Arino, D. Axelrod and M. Kimmel (Eds), World Sci. Publ., River Edge, NJ, 6 (1997), 691-711.

[25]

E. Venturino, Age-structured predator-prey models, Math. Modelling, 5 (1984), 117-128. doi: 10.1016/0270-0255(84)90020-4.

[26]

Y. Wang and D. L. DeAngelis, Transitions of interaction outcomes in a uni-directional consumer-resource system, J. Theoret. Biol., 280 (2011), 43-49. doi: 10.1016/j.jtbi.2011.03.038.

[27]

Y. Wang, D. L. DeAngelis and J. N. Holland, Uni-directional consumer-resource theory characterizing transitions of interaction outcomes, Ecol. Complexity, 8 (2011), 249-257. doi: 10.1016/j.ecocom.2011.04.002.

[28]

Y. Wang, D. L. DeAngelis and J. N. Holland, Uni-directional Interaction and Plant pollinator robber Coexistence, Bull. Math. Biol., 74 (2012), 2142-2164. doi: 10.1007/s11538-012-9750-0.

[1]

Robert Stephen Cantrell, Chris Cosner, Shigui Ruan. Intraspecific interference and consumer-resource dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 527-546. doi: 10.3934/dcdsb.2004.4.527

[2]

Kun Hu, Yuanshi Wang. Dynamics of consumer-resource systems with consumer's dispersal between patches. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 977-1000. doi: 10.3934/dcdsb.2021077

[3]

Wonlyul Ko, Inkyung Ahn, Shengqiang Liu. Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1715-1733. doi: 10.3934/dcdsb.2015.20.1715

[4]

C. Connell McCluskey. Global stability for an SEI epidemiological model with continuous age-structure in the exposed and infectious classes. Mathematical Biosciences & Engineering, 2012, 9 (4) : 819-841. doi: 10.3934/mbe.2012.9.819

[5]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[6]

Tongtong Chen, Jixun Chu. Hopf bifurcation for a predator-prey model with age structure and ratio-dependent response function incorporating a prey refuge. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022082

[7]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[8]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[9]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[10]

Xianlong Fu, Zhihua Liu, Pierre Magal. Hopf bifurcation in an age-structured population model with two delays. Communications on Pure and Applied Analysis, 2015, 14 (2) : 657-676. doi: 10.3934/cpaa.2015.14.657

[11]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[12]

Bin-Guo Wang, Wan-Tong Li, Liang Zhang. An almost periodic epidemic model with age structure in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 291-311. doi: 10.3934/dcdsb.2016.21.291

[13]

Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325

[14]

Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121

[15]

C. Connell McCluskey. Global stability for an $SEI$ model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 381-400. doi: 10.3934/mbe.2015008

[16]

Shengqin Xu, Chuncheng Wang, Dejun Fan. Stability and bifurcation in an age-structured model with stocking rate and time delays. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2535-2549. doi: 10.3934/dcdsb.2018264

[17]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[18]

Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220

[19]

George Avalos, Roberto Triggiani. Fluid-structure interaction with and without internal dissipation of the structure: A contrast study in stability. Evolution Equations and Control Theory, 2013, 2 (4) : 563-598. doi: 10.3934/eect.2013.2.563

[20]

Igor Kukavica, Amjad Tuffaha. Solutions to a fluid-structure interaction free boundary problem. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1355-1389. doi: 10.3934/dcds.2012.32.1355

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (203)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]