January  2016, 21(1): 55-65. doi: 10.3934/dcdsb.2016.21.55

Stochastic PDE model for spatial population growth in random environments

1. 

Department of Mathematics, Wayne State University, Detroit, MI 48202

Received  February 2015 Revised  September 2015 Published  November 2015

The paper is concerned with a class of stochastic reaction-diffusion equations arising from a spatial population growth model in random environments. Under some sufficient conditions, Theorem 3.1 shows that the equation has a unique positive global solution in space $H^1(D)$. Then it is proven in Theorem 4.1 that the solution, as the population size, is ultimately bounded in the mean $L^2-$norm as the time tends to infinity. An almost-sure upper bound is also obtained for the long run time-average of the exponential rate of the population growth in $L^2-$norm together with the $L^p-$moment of the population size with $p \geq 2.$ It is also shown in Theorem 4.3 that there is a unique invariant measure that leads to a stationary population distribution. For illustration, an example is given.
Citation: Pao-Liu Chow. Stochastic PDE model for spatial population growth in random environments. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 55-65. doi: 10.3934/dcdsb.2016.21.55
References:
[1]

P. Chow, Stochastic Partial Differential Equations,, $2^{nd}$ edition, (2015). Google Scholar

[2]

P. Chow, Unbounded positive solutions of nonlinear parabolic Itô equations,, Comm. Stoch. Analy., 3 (2009), 211. Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[4]

L. Edelstein-Keshet, Mathematical Models in Biology,, Random House, (1988). Google Scholar

[5]

I. Gyöngy, N. V. Krylov and B. L. Rozovskii, On stochastic equations with respect to semimartingales II: Itô formula in Banach spacses,, Stochastics, 6 (1982), 153. Google Scholar

[6]

R. Liptser, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217. doi: 10.1080/17442508008833146. Google Scholar

[7]

Y. Lou, T. Nagylaki and W. Ni, An introduction to migration, selection PDE models,, Discr. Conti. Dyn. Syst., 33 (2013), 4349. doi: 10.3934/dcds.2013.33.4349. Google Scholar

[8]

X. Mao, S. Sabanis and E. Renshaw, Asymptotic behavier of the sochastic Lotka-Volterra model,, J. Math. Analy. Appl., 287 (2003), 141. doi: 10.1016/S0022-247X(03)00539-0. Google Scholar

[9]

W. Ni, The Mathematics of Diffusion,, CBMS-NSF Regional Conf. Series in Appl. Math., 82 (2011). doi: 10.1137/1.9781611971972. Google Scholar

[10]

B. Øksendal, Stochastic Differential Equations,, Springer, (2003). Google Scholar

[11]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,, Stochastics, 3 (1979), 127. doi: 10.1080/17442507908833142. Google Scholar

[12]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1983). Google Scholar

[13]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Walter de Gruyter, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[14]

C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,, J. Math. Anal. Appl., 357 (2009), 154. doi: 10.1016/j.jmaa.2009.03.066. Google Scholar

show all references

References:
[1]

P. Chow, Stochastic Partial Differential Equations,, $2^{nd}$ edition, (2015). Google Scholar

[2]

P. Chow, Unbounded positive solutions of nonlinear parabolic Itô equations,, Comm. Stoch. Analy., 3 (2009), 211. Google Scholar

[3]

G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions,, Cambridge University Press, (1992). doi: 10.1017/CBO9780511666223. Google Scholar

[4]

L. Edelstein-Keshet, Mathematical Models in Biology,, Random House, (1988). Google Scholar

[5]

I. Gyöngy, N. V. Krylov and B. L. Rozovskii, On stochastic equations with respect to semimartingales II: Itô formula in Banach spacses,, Stochastics, 6 (1982), 153. Google Scholar

[6]

R. Liptser, A strong law of large numbers for local martingales,, Stochastics, 3 (1980), 217. doi: 10.1080/17442508008833146. Google Scholar

[7]

Y. Lou, T. Nagylaki and W. Ni, An introduction to migration, selection PDE models,, Discr. Conti. Dyn. Syst., 33 (2013), 4349. doi: 10.3934/dcds.2013.33.4349. Google Scholar

[8]

X. Mao, S. Sabanis and E. Renshaw, Asymptotic behavier of the sochastic Lotka-Volterra model,, J. Math. Analy. Appl., 287 (2003), 141. doi: 10.1016/S0022-247X(03)00539-0. Google Scholar

[9]

W. Ni, The Mathematics of Diffusion,, CBMS-NSF Regional Conf. Series in Appl. Math., 82 (2011). doi: 10.1137/1.9781611971972. Google Scholar

[10]

B. Øksendal, Stochastic Differential Equations,, Springer, (2003). Google Scholar

[11]

E. Pardoux, Stochastic partial differential equations and filtering of diffusion processes,, Stochastics, 3 (1979), 127. doi: 10.1080/17442507908833142. Google Scholar

[12]

J. Smoller, Shock Waves and Reaction-Diffusion Equations,, Springer-Verlag, (1983). Google Scholar

[13]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, Walter de Gruyter, (1988). doi: 10.1007/978-1-4684-0313-8. Google Scholar

[14]

C. Zhu and G. Yin, On competitive Lotka-Volterra model in random environments,, J. Math. Anal. Appl., 357 (2009), 154. doi: 10.1016/j.jmaa.2009.03.066. Google Scholar

[1]

A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure & Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65

[2]

Tiberiu Harko, Man Kwong Mak. Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences & Engineering, 2015, 12 (1) : 41-69. doi: 10.3934/mbe.2015.12.41

[3]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[4]

Perla El Kettani, Danielle Hilhorst, Kai Lee. A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5615-5648. doi: 10.3934/dcds.2018246

[5]

Hongwei Chen. Blow-up estimates of positive solutions of a reaction-diffusion system. Conference Publications, 2003, 2003 (Special) : 182-188. doi: 10.3934/proc.2003.2003.182

[6]

Xiaoyan Zhang, Yuxiang Zhang. Spatial dynamics of a reaction-diffusion cholera model with spatial heterogeneity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2625-2640. doi: 10.3934/dcdsb.2018124

[7]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[8]

Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200

[9]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[10]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[11]

Piermarco Cannarsa, Giuseppe Da Prato. Invariance for stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2012, 1 (1) : 43-56. doi: 10.3934/eect.2012.1.43

[12]

Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reaction-diffusion pelagic-benthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2325-2347. doi: 10.3934/cpaa.2019105

[13]

Benedetto Bozzini, Deborah Lacitignola, Ivonne Sgura. Morphological spatial patterns in a reaction diffusion model for metal growth. Mathematical Biosciences & Engineering, 2010, 7 (2) : 237-258. doi: 10.3934/mbe.2010.7.237

[14]

Heather Finotti, Suzanne Lenhart, Tuoc Van Phan. Optimal control of advective direction in reaction-diffusion population models. Evolution Equations & Control Theory, 2012, 1 (1) : 81-107. doi: 10.3934/eect.2012.1.81

[15]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[16]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[17]

Giuseppe Da Prato. An integral inequality for the invariant measure of some finite dimensional stochastic differential equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3015-3027. doi: 10.3934/dcdsb.2016085

[18]

Yan Wang, Guanggan Chen. Invariant measure of stochastic fractional Burgers equation with degenerate noise on a bounded interval. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3121-3135. doi: 10.3934/cpaa.2019140

[19]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[20]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

2018 Impact Factor: 1.008

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]